• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Downstate Health Sciences University
    • Downstate School of Graduate Studies Theses and Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Downstate Health Sciences University
    • Downstate School of Graduate Studies Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateDutchessEmpireFarmingdaleFinger LakesFredoniaHerkimerMaritimeNew PaltzNiagaraOld WestburyOneontaOnondagaOptometryOswegoPlattsburghPurchase CollegePolytechnic InstituteSUNY Office of Workforce Development and Upward MobilitySUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Circuit Breakers: α4βδ GABA-A Receptors Drive Adolescent Refinement of Neural Circuits in Prefrontal Cortex.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    EvrardMatthew_These12122023.pdf
    Size:
    1.983Mb
    Format:
    PDF
    Description:
    Doctoral Dissertation
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Evrard, Matthew
    Readers/Advisors
    Smith, Sheryl
    Term and Year
    Fall 2023
    Date Published
    2023-12-23
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/15912
    Abstract
    Adolescence is a time when synaptic connections are sculpted to prepare for the cognitive challenges of adulthood, a process known as synaptic pruning. Although this process was first reported over 30 years ago, the initial trigger and functional reason for pruning remain unknown. This thesis provides a multifaceted investigation of α4βδ GABA-A receptor regulation of dendritic spine pruning within pyramidal neurons of the prelimbic prefrontal cortex across adolescent development in mice. The prelimbic cortex projects to the amygdala and drives anxiety states, making precise pruning of juvenile connections critical for proper maturation. Using high-resolution microscopic analysis of Golgi-stained samples, I report a dramatic developmental decrease in basilar dendritic spine density on layer 5 pyramidal neurons between early puberty (16.39 ± 1.55 spines/10μm) and young adulthood (6.10 ± 0.58 spines/10μm), reflecting a 63% reduction (p < 0.0001). This remodeling coincides with a transient 10-fold increase in α4 subunit expression precisely at puberty onset (p < 0.00001) within layer 5 pyramidal neuron dendrites, revealed by immunohistochemistry and amplified electrophysiological responses to a δ subunit-selective agonist (p = 0.00125). Convergent pharmacological, local knockdown (using viral shRNA knockdown and Cre-loxP deletion), and global knockout of α4βδ GABAARs prevented adolescent pruning, while augmenting α4βδ signaling via the selective agonist gaboxadol during early puberty significantly enhanced spine elimination (p<0.05). This demonstrates the causal role of this signaling pathway in mediating the extensive remodeling. The mechanism likely involves α4βδ receptor-mediated suppression of NMDA receptor activation of Kalirin-7 pathways which maintain the dendritic cytoskeleton. α4 knockout prevents the typical 50% decrease in Kalirin-7 levels at puberty (p<0.0001), suggesting dependence on α4βδ signaling. In contrast, increasing NMDAR expression prevents pruning. Critically, preventing pubertal pruning through localized α4βδ knockdown in the prelimbic cortex using AAV-Cre administration increases anxiety-like avoidance behaviors on the elevated plus maze test after an aversive stimulus by 60% in late adolescence (p<0.0001) and 40% in adulthood (p<0.05). This causally links excess prelimbic connectivity from disrupted juvenile synapse elimination to anxiety-related behavioral phenotypes. Furthermore, a similar developmental decrease in spine density occurs in layer 2/3 pyramidal neurons in female mice, aligned with a key role for α4-containing receptors as evidenced by a lack of pruning in α4 knockout mice. Taken together, these results suggest a role for the extrasynaptic α4βδ GABAARs in triggering synaptic pruning and further demonstrate one pathological outcome which can result from dysregulated pruning.
    Citation
    Evrard, Mathew (2023) Circuit Breakers: α4βδ GABA-A Receptors Drive Adolescent Refinement of Neural Circuits in Prefrontal Cortex. [Doctoral dissertation, SUNY Downstate Health Sciences University]. SUNY Open Access Repository. https://soar.suny.edu/handle/20.500.12648/15912
    Description
    Doctoral Dissertation
    Collections
    Downstate School of Graduate Studies Theses and Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.