Show simple item record

dc.contributor.authorMcCrossan, Zoe A.
dc.contributor.authorLewis, Anthony
dc.contributor.authorPanaghie, Gianina
dc.contributor.authorJordan, Peter N.
dc.contributor.authorChristini, David J.
dc.contributor.authorLerner, Daniel J.
dc.contributor.authorAbbott, Geoffrey W.
dc.date.accessioned2024-11-18T17:32:09Z
dc.date.available2024-11-18T17:32:09Z
dc.date.issued2003-09-03
dc.identifier.citationMcCrossan ZA, Lewis A, Panaghie G, Jordan PN, Christini DJ, Lerner DJ, Abbott GW. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. J Neurosci. 2003 Sep 3;23(22):8077-91. doi: 10.1523/JNEUROSCI.23-22-08077.2003. PMID: 12954870; PMCID: PMC6740484.en_US
dc.identifier.issn0270-6474
dc.identifier.eissn1529-2401
dc.identifier.doi10.1523/jneurosci.23-22-08077.2003
dc.identifier.pmid12954870
dc.identifier.pii10.1523/JNEUROSCI.23-22-08077.2003
dc.identifier.urihttp://hdl.handle.net/20.500.12648/15833
dc.description.abstractDelayed rectifier potassium current diversity and regulation are essential for signal processing and integration in neuronal circuits. Here, we investigated a neuronal role for MinK-related peptides (MiRPs), membrane-spanning modulatory subunits that generate phenotypic diversity in cardiac potassium channels. Native coimmunoprecipitation from rat brain membranes identified two novel potassium channel complexes, MiRP2-Kv2.1 and MiRP2-Kv3.1b. MiRP2 reduces the current density of both channels, slows Kv3.1b activation, and slows both activation and deactivation of Kv2.1. Altering native MiRP2 expression levels by RNAi gene silencing or cDNA transfection toggles the magnitude and kinetics of endogenous delayed rectifier currents in PC12 cells and hippocampal neurons. Computer simulations predict that the slower gating of Kv3.1b in complexes with MiRP2 will broaden action potentials and lower sustainable firing frequency. Thus, MiRP2, unlike other known neuronal beta subunits, provides a mechanism for influence over multiple delayed rectifier potassium currents in mammalian CNS via modulation of alpha subunits from structurally and kinetically distinct subfamilies.en_US
dc.language.isoenen_US
dc.publisherSociety for Neuroscienceen_US
dc.relation.urlhttps://www.jneurosci.org/content/23/22/8077.longen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMinK-Related Peptide 2 Modulates Kv2.1 and Kv3.1 Potassium Channels in Mammalian Brainen_US
dc.typeArticle/Reviewen_US
dc.source.journaltitleThe Journal of Neuroscienceen_US
dc.source.volume23
dc.source.issue22
dc.source.beginpage8077
dc.source.endpage8091
dc.description.versionVoRen_US
refterms.dateFOA2024-11-18T17:32:12Z
dc.description.institutionSUNY Downstateen_US
dc.description.departmentPhysiology and Pharmacologyen_US
dc.description.degreelevelN/Aen_US
dc.identifier.issue22en_US


Files in this item

Thumbnail
Name:
8077.full.pdf
Size:
881.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International