Show simple item record

dc.contributor.authorKarabacak, Mert
dc.contributor.authorJagtiani, Pemla
dc.contributor.authorCarrasquilla, Alejandro
dc.contributor.authorGermano, Isabelle M.
dc.contributor.authorMargetis, Konstantinos
dc.date.accessioned2024-02-20T19:44:14Z
dc.date.available2024-02-20T19:44:14Z
dc.date.issued2023-10-26
dc.identifier.citationKarabacak M, Jagtiani P, Carrasquilla A, Germano IM, Margetis K. Prognosis Individualized: Survival predictions for WHO grade II and III gliomas with a machine learning-based web application. NPJ Digit Med. 2023 Oct 26;6(1):200. doi: 10.1038/s41746-023-00948-y. PMID: 37884599; PMCID: PMC10603035.en_US
dc.identifier.eissn2398-6352
dc.identifier.doi10.1038/s41746-023-00948-y
dc.identifier.pmid37884599
dc.identifier.pii948
dc.identifier.urihttp://hdl.handle.net/20.500.12648/14693
dc.description.abstractWHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing survival, aiding clinicians in generating more precise and personalized survival predictions. Here we report the utilization of ML models in predicting survival at 12, 24, 36, and 60 months following grade II and III glioma diagnosis. From the National Cancer Database, we analyze 10,001 WHO grade II and 11,456 grade III cranial gliomas. Using the area under the receiver operating characteristic (AUROC) values, we deploy the top-performing models in a web application for individualized predictions. SHapley Additive exPlanations (SHAP) enhance the interpretability of the models. Top-performing predictive models are the ones built with LightGBM and Random Forest algorithms. For grade II gliomas, the models yield AUROC values ranging from 0.813 to 0.896 for predicting mortality across different timeframes, and for grade III gliomas, the models yield AUROCs ranging from 0.855 to 0.878. ML models provide individualized survival forecasts for grade II and III glioma patients across multiple clinically relevant time points. The user-friendly web application represents a pioneering digital tool to potentially integrate predictive analytics into neuro-oncology clinical practice, to empower prognostication and personalize clinical decision-making.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.urlhttps://www.nature.com/articles/s41746-023-00948-yen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectHealth Information Managementen_US
dc.subjectHealth Informaticsen_US
dc.subjectComputer Science Applicationsen_US
dc.subjectMedicine (miscellaneous)en_US
dc.titlePrognosis Individualized: Survival predictions for WHO grade II and III gliomas with a machine learning-based web applicationen_US
dc.typeArticle/Reviewen_US
dc.source.journaltitlenpj Digital Medicineen_US
dc.source.volume6
dc.source.issue1
dc.description.versionVoRen_US
refterms.dateFOA2024-02-20T19:44:15Z
dc.description.institutionSUNY Downstateen_US
dc.description.departmentMedicineen_US
dc.description.degreelevelN/Aen_US
dc.identifier.issue1en_US


Files in this item

Thumbnail
Name:
s41746-023-00948-y.pdf
Size:
2.219Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0