Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Keyword
Research Subject Categories::TECHNOLOGY::Electrical engineering, electronics and photonicsWireless power
Inductive coupling
3D Printing
Passive sensing
Gastro-intestinal disorders
Implantable electronics
Injection molding
Date Published
2019-05
Metadata
Show full item recordAbstract
A fully passive wireless implantable pH sensor that is implantable in an animate silicone stomach environment has been developed for the study of gastric disorders. The system has applications in medical training and testing. It can be used for pH monitoring as well as testing the efficiency of antacid medication. To achieve this, wireless power is sent from a reading circuit, via a class E amplifier connected to an inductive coil. The implanted circuit harvests the energy sent with a charge pump, and returns the measured pH via Frequency Shift Keying (FSK) modulation. The electronic components were simulated using Keysight Advanced Design System (ADS), prototyped on breadboards, amended, and finally manufactured onto Printed Circuit Boards (PCBs). To make the stomach, an injection molding process was employed using a sacrificial wax inner core and a 3D printed mold. The completed stomach model features 5mm thick walls at life-size scale, and demonstrates realistic digestive motion. The current implant design uses a traditional pH probe for proof of concept, fits within the stomach at 2.5cm by 5cm, and is capable of returning readings at a distance of up to 4 inches with an accuracy within 0.2pH. The reader coil can read pH once every ten minutes for 43 hours on a single charge.The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States