Loss of Nicotinamide Nucleotide Transhydrogenase Potentiates Autoimmunity in the C57BL/6J Mouse Strain
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Wyman, BrandonReaders/Advisors
Perl, AndrasTerm and Year
Summer 2023Date Published
2023-06
Metadata
Show full item recordAbstract
In Chapter I, we will discuss recent studies showing that mTOR pathway activation plays a critical role in the pathogenesis of autoimmune diseases. The mTOR pathway is a central regulator of growth and survival signals, integrating environmental cues to control cell proliferation and differentiation. Activation of mTOR underlies inflammatory lineage specification, and mTOR blockade-based therapies show promising efficacy in several autoimmune diseases. In Chapter II, we will discuss nicotinamide nucleotide transhydrogenase, NNT, an enzyme localized to the inner mitochondrial membrane which contributes to mitochondrial NADPH production. In C57BL/6J mice, the spontaneous loss of NNT creates a natural model for researching oxidative stress and its ability to potentiate autoimmune disease via the mTOR/AKT pathway. We identify the loss of NNT as a driver of autoimmune pathogenesis, including in multiple sclerosis and ulcerative colitis models. In sum, we highlight the link between upstream pathways of mTOR activation, particularly oxidative stress, and the downstream pathological shift in autoimmune disease due to mTOR activation. We show the novel finding that loss of NNT in the C57BL/6J mouse potentiates autoimmune pathogenesis, and that restoration of wild-type NNT reduces disease burden in select autoimmune models via restoration of redox balance.Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International