Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Batsuuri, KhulanDate Published
2023-08
Metadata
Show full item recordAbstract
Glaucoma is an irreversible blinding disease due to progressive loss of retinal ganglion cells (RGCs) and their axons. Astrocytes are glial cells that reside in the retinal nerve fiber layer (RNFL) closely to RGC bodies and unsheathe axons in the optic nerve head. Astrocytes play an important role in the pathogenesis of glaucoma. A unique feature of astrocytes is that they are extensively coupled by gap junctions (GJ) composed of connexin 43 (Cx43). In addition, unopposed Cx43 hemichannels can open in pathological conditions and release signaling molecules (e.g., ATP and excess glutamate). The role of astrocytic Cx43 GJ and hemichannels in glaucoma is unclear. Here we studied the effect of Cx43 deletion in astrocytes in normal conditions and in glaucomatous injuries. Results show that deletion of Cx43 does not affect normal retinal function, potentially due to direct coupling of astrocytes to Müller glia. Microbead-induced elevation of IOP increased Cx43 expression and GJ coupling in astrocytes. Importantly, astrocyte-specific deletion of Cx43 markedly reduced RGC death and preserved visual function in glaucomatous mice. Absence of Cx43 in astrocytes also reduced microglial activation in glaucoma but did not affect astrocyte reactivity. Additionally, intravitreal injections of Gap19 peptide, a selective Cx43 hemichannel blocker, markedly increased RGC survival and improved RGC function, indicating a contribution of activated Cx43 hemichannels in glaucoma progression. Therefore, targeting Cx43 hemichannels might be a new therapeutic approach to the treatment of glaucoma.Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International