• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY College of Optometry
    • SUNY Optometry Doctoral Dissertation Collection
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY College of Optometry
    • SUNY Optometry Doctoral Dissertation Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Oculomotor rehabilitation for reading dysfunction in mild traumatic brain injury

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thiagarajan_PhD thesis.pdf
    Size:
    3.576Mb
    Format:
    PDF
    Description:
    Main Article
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Thiagarajan, Preethi
    Keyword
    rehabilitation, oculomotor
    reading
    traumatic brain injury
    Date Published
    2013-06-04
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1144
    Abstract
    Abstract: Aim Considering the extensive neural network of the oculomotor subsystems, global damage as a result of traumatic brain injury could compromise precise oculomotor control, thus causing reading dysfunction. The aim of the present thesis was to evaluate comprehensively the effect of oculomotor-based vision rehabilitation in symptomatic individuals with respect to nearwork and reading and having a mild traumatic brain injury (mTBI). A wide range of laboratory and clinical parameters related to reading involving vergence, accommodation, and version were tested. Methods Twelve subjects with documented mTBI and nearvision-related symptoms participated in the study. A cross-over, interventional experimental design was used involving true “oculomotor” training and “SHAM” training. Each training protocol was performed for 6 weeks, 2 sessions a week, 45 minutes of actual training per session. During each training session, all three oculomotor subsystems (vergence/accommodation/version) were trained for 15 minutes each in a randomized order. All laboratory and clinical parameters were measured before (baseline) and after true oculomotor (post-OMT) and SHAM (post-SHAM) training. In addition, nearvision-related symptoms were assessed using the Convergence Insufficiency Symptom Survey (CISS) scale. Lastly, subjective attention was measured using the Visual Search and Attention Test (VSAT). iv Results Following true oculomotor training, there was a marked improvement in various laboratory and clinical parameters assessed. Over 80% of the abnormal parameters found at baseline testing were found to significantly improve with training. Dynamics of vergence and accommodation, along with clinically assessed maximum amplitudes, improved markedly. Versional saccadic eye movements demonstrated improved rhythmicity and accuracy. These results together had a significant positive impact on overall reading ability. The improved reading-related oculomotor behavior was reflected in reduction of symptoms. In addition, subjective attention was found to also improve with true oculomotor training. In contrast, none of the aforementioned parameters changed with SHAM training. Conclusions Oculomotor-based vision rehabilitation had a strong positive effect on reading-related oculomotor control. This oculomotor learning effect is suggestive of intact neuroplasticity mechanisms in a compromised brain following TBI.
    Collections
    SUNY Optometry Doctoral Dissertation Collection

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.