• Connexin43 and immunity : macrophage phagocytosis, cardiac calcinosis and autoimmune myocarditis

      Steven Taffet; Aaron Glass (2013)
      Connexin43 (Cx43) is a gap junction protein best known for coupling the cytoplasms of cardiac myocytes and allowing the efficient conduction of action potentials throughout the heart. In addition to the heart, Cx43 is also highly expressed in many immune cells and it has been attributed numerous roles in immunity. One such reported role was in macrophage phagocytosis. The first chapter in this dissertation explored the phagocytic activity of cultured and primary murine macrophages from wild type (WT) and Cx43-deleted (Cx43-/-) macrophages. No difference in phagocytic uptake was observed between the two groups using a series of target particles, indicating that Cx43 is dispensable for phagocytosis in macrophages. Given the spectrum of immune functions in which Cx43 has been ascribed a role, we set out to characterize its effect on a model of autoimmune myocarditis (EAM). Using the area of cardiac inflammatory infiltrate as a correlate of disease severity, we observed the progression of the disease to be independent of Cx43 status utilizing WT and Cx43-heterozygous (Cx43+/-) animals as well as radiation chimeric mice reconstituted with cells from donor WT, Cx43+/- and Cx43-/- mice. Although the severity of EAM did not measurably change when induced in animals with differing levels of Cx43 expression, substantial changes to ventricular Cx43 were noted in diseased hearts. Large foci were observed that completely lacked Cx43 immunofluorescence signal. Areas surrounding these foci exhibited disrupted Cx43 patterns such as internalization and lateralization. Similar alterations to Cx43 were also observed in the BALB/cByJ strain of laboratory mice that develop a spontaneous myocarditic disease. To investigate the electrophysiological ramifications of EAM, especially in the context of Cx43+/- mice, ECGs were recorded from animals over the course of EAM. Significant changes to the QRS interval were noted, including prolongation that was only observed in Cx43+/- animals.
    • Specific mutations in the α and ß subunits of the Kluyveromyces lactis F1-ATPase enhance ATP hydrolysis in the absence of the central γ-rotor

      Xin Jie Chen; Thuy La (2013)
      In eukaryotic cells, the mitochondria are vital organelles which are required for cell viability. Mitochondrial stresses such as oxidative stress, loss of membrane potential or loss of mitochondrial DNA are considered extreme and are associated with many neurodegenerative diseases and aging. The mitochondrial FoF1-synthase, where the majority of cellular ATP is synthesized, is composed of one inner membrane bound Fo domain and a water soluble F1 domain in the mitochondrial matrix. F1 contains the hexameric α3β3core and the centrally located γ subunit. The γ subunit is believed to play a key role in inducing conformational changes while rotating within the α3β3 core during ATP hydrolysis/synthesis. Previous studies have shown that the α3β3 core alone from the Thermophilic bacterium PS3 has a detectable hydrolyzing activity. In recent years, evidence of the rotary catalysis of Thermophilic Bacillus sp. PS3 F1-ATPase without its rotor - subunit γ - was shown using high-speed atomic force microscopy[1]. Moreover, previous study undertaken in our lab had utilized a unique genetic screen that allowed the identification of two specific mutations in the α and β subunits in the aerobic yeast Kluyveromyces lactis that stimulate ATP hydrolysis by the mitochondrial F1-ATPase in the absence of γ. This allows cells to survive upon the loss of mitochondrial DNA. In current work, we confirmed that the αF446I and βG419D mutations on the DELSEED loop are sufficient to allow ρ0 cells to survive in the absence of γ. Biochemical experiments showed that the γ -less F1-ATPase can be assembled to actively hydrolyze iv ATP in vivo, but this activity becomes extremely labile in vitro. These studies give insights into the catalytic mechanism of the α3β3 subcomplex and help to better understand the evolutionary origin of the mitochondrial F1-ATPase.
    • EVALUATION OF THE ROLE OF THE CENTRAL PAIR IN CHLAMYDOMONAS REINHARDTII FLAGELLAR MOTILITY

      Mitchell, David; Brandon, Smith (2013)
      Cilia and flagella are essential for the function of nearly all eukaryotes. This organelle is made up of nine outer doublet microtubules and two central singlet microtubules to form the canonical (9+2) ciliary structure. Cilia and flagella use this structure, as well as several protein complexes, such as the outer and inner dynein arms, the radial spokes, and the proteins that decorate the central pair to propagate the bending that produces motion. Flagellar motion is highly regulated, and each of these structures is necessary to regulate the dynein arms that generate the motile force. The central pair is one of the least understood of these structures. To date there are two major impediments hindering our understanding of the central pair: a lack of understanding as to how distinct central pair structures work in concert, and a general lack of available central pair mutant strains in the model organism Chlamydomonas reinhardtii. In order to further our understanding of how the central pair functions I have used multiple strategies. Firstly I have used previously characterized central pair mutants to study both structural interactions within the central pair and how the double mutant affects motility regulation. Secondly I provide evidence that a potential central pair mutant, H2, is indeed a central pair mutant and affects the C2b projection. Lastly I will attempt to characterize a new Chlamydomonas mutant, 10B5. Together these analyses will demonstrate that double mutants can have an additive effect on the structure of the central pair, and that double central pair mutants do not appear to suppress one another, but are at least ivepistatic to the most severe phenotype. I will also show evidence that 10B5 is not a central pair mutant, but with further study it may offer new insight into motilityregulation.
    • BRAIN SPECIFIC NEURAL EXTRACELLULAR MATRIX EXPRESSION AND MODIFICATIONS IN NEUROLOGICAL DISEASE AND DISORDERS

      Matthews, Rick; Dwyer, Chrissa (2013)
      The central nervous system (CNS) is extraordinarily complex in both structure and function. The neural extracellular matrix (ECM) is one of the key classes ofmolecules that regulates thedevelopment of the CNS and maintains its structure and function in the adult.Thereby understanding the function of the neural ECMis key to understanding the CNS. The neural ECM is composed of several nervous-system specificproteins, which are hypothesized to uniquely contribute to the defining physiological functions of the CNS. However,work in this area has been hindered by the highly complex molecular properties of the neural ECM, which stem from alterations in expressionand modifications (resulting from glycosylation and proteolytic cleavage) of its constituents. Further defining mechanisms that alter the expression and modifications of neural ECM constituents are critical to fully understanding its complex array of functions. Often in neuropathologies, the neural ECM undergoes dynamic changes providing a valuable tool to further understand its function andthe opportunity to explore its contribution to disease pathology and utility as a therapeutic target. The work presented herein investigates the role of altered expression of the nervous-system specific ECM constituent, Brain Enriched Hyaluronan Binding (BEHAB)/ brevican(B/b), in glioma,and altered glycosylation of the nervous system enriched ECM constituent, RPTPζ/phosphacan, in O-mannosylrelated congenital muscular dystrophies (CMDs). Our work suggests that increased expression of B/b in the glioma tumor microenvironment (TEM) contributes to the pathological progression of these tumors, and reducing its expression is a valuable therapeutic strategy. Additionally, our work evaluates the transcriptional regulatory mechanisms leading to increases inB/b expression in glioma and highlights the potential value of these mechanisms as therapeutic targets. Our work also identifies the absence of O-mannosyl linked carbohydrates on RPTPζ/phosphacan in the brains of CMD models and suggests that altered glycosylation of RPTPζ/phosphacan may have a role in the neuropathologies underlying these disorders. Overall this work provides valuable insight intothe molecular complexities of the neural ECM stemming from changes in the expression and glycosylation of its constituents and furthers our understanding of its function in the normal CNS and in neuropathologies.
    • Alternative splicing dysregulation in mental disorders

      Glatt, Stephen; Cohen, Ori S (2014)
      The brain's ability to adapt ultimately depends on the efficiency with which neuronal connections are made, destroyed, or manipulated. This connectivity is largely controlled by synaptic plasticity, which creates, strengthens, or weakens signals that are necessary for appropriate functioning of the organism. This constant rewiring allows an organism to learn, mature, and cope with the ever-changing environment. However, this rewiring is dependent on the ability to make new proteins, which highlights the importance of transcription, translation, and post-translational modification in the process of synaptic plasticity. Among these cellular functions, transcription plays a key role in providing the necessary variability that is required to regulate neurodevelopment and cognitive behaviors. During transcription, alternative splicing regulates the contents of transcriptomic elements by cutting and stitching the transcribed pre-mRNA and adjusting the configuration of the mature mRNA(s) to meet the necessary cellular requirements. Therefore, it is conceivable that alternative splicing abnormalities can result in inappropriate adjustment of the transcriptome and result in pathological adaptation. In this dissertation, I review the evidence of dysfunctional gene splicing in neuropsychiatric disorders. Then I evaluate the extent of alternative splicing in an animal model for social interaction. This model utilizes valproic acid exposure at a critical developmental period to illicit significant and long-lasting changes in social interaction behavior. Next, I explore the abundance and types of alternative-splicing dysregulationin postmortembrain tissue samples from schizophrenia patients as compared to non-psychotic comparison subjects. Finally, I describe the mechanisms by which a schizophrenia-associated polymorphism in a strong candidate gene (DRD2, which encodes the D2 dopamine receptor) disrupts alternative splicing and leads to inappropriate transcription that is associated with cognitive dysfunction. Collectively, these results reinforce the notion that consideration of genetic variants that dysregulate particular mRNA isoforms and understanding the biological consequence of expressing such isoforms is a crucial step in our efforts to understand human behavior and to develop therapeutic interventions for mental disorders.
    • Preclinical Development of Anti-Cancer Drugs from Natural Products.

      Huang, Ying; Sun, Qing (2014)
      Cancer has been and will continue to be the common concern in the United States and worldwide. As a conventional treatment to fight cancer, new anti-cancer drugs with more efficiency and less toxicity are extremely required. In this study, we have identified two novel compounds with anti-cancer properties from two traditional Chinese medicinal plants. One is Lappaol F that was extracted from the seeds of the plant Actium Lapp L., which has been used in China for centuries as anti-viral and anti-bacterial medicine. Another is M-9 that was extracted from the stem of Marsdenia tenacissima,a plant that has been applied to treat inflammation and cancer in China. Our results showed that Lappaol F inhibited cancer cell growth by regulating a series of cell cycle related proteins and inducing cell cycle arrest at G1 and/or G2 phase. p21 played a critical role in Lappaol F-induced cyclin B1 and cyclin-dependent kinase 1 (CDK1) suppression as well as G2arrest. Lappaol F also induced cell death in a number of cancer cells through caspases activation. Lappaol F-mediated cell growth inhibition was p53-independent. Notably, results from animal studies showed that Lappaol F effectively inhibited tumor growth in vivo, while being well tolerated by the mice. Thus, Lappaol F has a strong potential to be developed as a novel anti-cancer chemotherapeutic. Our studies showed that M-9 successfully sensitized several tumor cells but not non-tumorigenic cells to paclitaxel (Taxol) treatment. Additionally, M-9 reversed chemotherapeutic resistance in a number of multidrug resistant cells. Further results suggested that M-9 functioned, at least to a certain extent, via inhibiting drug efflux by competitively binding to P-glycoprotein (P-gp), a protein that accounts for multidrug resistance. Importantly, results from the in vivostudies demonstrated that M-9 strongly enhanced Taxol-induced growth suppression against xenografts derived from HeLa cells. Moreover, mice tolerated the treatment of Taxol and M-9 well. Therefore, M-9 is a novel chemosensitizer candidate to overcome P-gp-mediated multidrug resistance. Taken together, our studies provide a solid basis for further development of these two compounds as anti-cancer remedies.
    • MITOCHONDRIAL ELECTRON TRANSPORT CHAIN ACTIVITY IN SYSTEMIC LUPUS ERYTHEMATOSUS

      Perl, Andras; Doherty, Edward (2014)
      Systemic lupus erythematosus (SLE) is an autoimmune disorder, characterized by T cell and B cell dysfunction. SLE mitochondria have been shown to be dysfunctional with increased mass, mitochondrial potential, decreased ATP, elevated reactive oxygen species (ROS) and reactive nitrogen species (RNS) concentrations, and altered Ca2+ stores. Drug treatments that target the mitochondria have shown efficacy in treating SLE. Here we have investigated electron transport chain (ETC) activity in SLE, to better understand the causes of mitochondrial dysfunction in SLE. We have found that mitochondrial complexes I and IV of the ETC have elevated respiration in SLE compared to healthy controls after both overnight resting and anti-CD3/CD28 stimulation. We have also shown that SLE complex I is resistant to NO inhibition of respiration. SLE peripheral blood lymphocytes (PBL) have increased S-nitrosylation (SNO) while immunoprecipitated complex I had decreased SNO of proteins compared to healthy controls. The drug Nacetylcysteine (NAC) was able to inhibit complex I activity in SLE, and was found to reduce the amount of complex I protein NDUFS3 after 15 minutes as measured by western blotting. These results have led us to the conclusion that SLE mitochondrial complex I is in an active form which is resistant to SNO and is driving the production of ROS and RNS that are associated with SLE. The drug NAC is able to inhibit complex I respiration which may have therapeutic efficacy by reducing the ROS and RNS stress in SLE.
    • ANTIVIRAL ACTIVITY AND MECHANISM OF ACTION OF A NOVEL URACIL ANALOG FOR VARICELLA-ZOSTER VIRUS

      Moffat, Jennifer; DE, CHANDRAV (2015)
      The alphaherpesvirus varicella-zoster virus (VZV) is widespread in humans. VZV causes primary and recurrent diseases that are preventable with live vaccines and are treatable with antiviral drugs. New antiviral drugs for varicella-zoster virus (VZV) with increased potency are needed, especially to prevent post-herpetic neuralgia. The purpose of this project was to evaluate β-L-1-[5-(E-2-Bromovinyl)-2-(hydroxymethyl)-1,3-dioxolan-4- yl)] uracil (L-BHDU) and 5′-O-valyl-L-BHDU for efficacy, safety, resistance, and mechanism of action in three models of VZV replication: primary human foreskin fibroblasts (HFFs), skin organ culture (SOC) and in SCID-Hu mice with skin xenografts. We found that L-BHDU and valyl-L-BHDU were safe and effective against VZV in culture and in a mouse model. Herpes simplex virus Type 1 was also sensitive to LBHDU in cultured cells. The mechanism of action of L-BHDU and its effect on drugdrug interactions were not known. Given its similar structure to brivudine (BVdU), we addressed whether L-BHDU, like BVdU, inhibits 5-fluorouracil (5-FU) metabolism. LBHDU did not interfere with 5FU metabolism, indicating that L-BHDU is a safer drug than BVdU. However, L-BHDU antagonized the activity of acyclovir (ACV), BVdU and foscarnet (PFA) in cultured cells, which was due to competition for phosphorylation by VZV thymidine kinase (TK). The mechanism of action of L-BHDU was studied by evaluating its activity against related α-herpesviruses and by analyzing resistant VZV viii strains. VZV strains resistant to L-BHDU (L-BHDUR ) were cross-resistant to ACV and BVdU but not to PFA and cidofovir (CDV). Whole genome sequencing of L-BHDUR strains identified mutations in ATP-binding (G22R) and nucleoside binding (R130Q) domains of VZV TK. The purified L-BHDUR TKs were enzymatically inactive and failed to phosphorylate the drug. In wild type VZV- infected cells, L-BHDU was converted to L-BHDU mono- and diphosphate forms; cells infected with L-BHDUR virus did not phosphorylate the drug. We also investigated whether addition of nucleosides reversed LBHDU inhibition of VZV in dividing and quiescent HFFs. Excess thymidine and uridine, but not purines, in proportion to L-BHDU restored VZV replication only in dividing cells, suggesting that the active form of L-BHDU interfered with pyrimidine biosynthesis. Like other herpesviruses, VZV infection induced thymidine triphosphate (dTTP) in confluent cells while L-BHDU treatment decreased the dTTP pool. Some herpesviruses raise dNTP pools by inducing cellular enzymes. However, VZV infection did not increase cellular thymidylate synthase (TS) expression to facilitate viral replication. Furthermore, the active form of L-BHDU did not interfere with cellular metabolism, suggesting a viral target. Further studies are required to identify the target(s) of L-BHDU active form(s).
    • ANTIVIRAL ACTIVITY AND MECHANISM OF ACTION OF A NOVEL URACIL ANALOG FOR VARICELLA-ZOSTER VIRUS

      Moffat, Jennifer; DE, CHANDRAV (2015)
      The alphaherpesvirus varicella-zoster virus (VZV) is widespread in humans. VZV causes primary and recurrent diseases that are preventable with live vaccines and are treatable with antiviral drugs. New antiviral drugs for varicella-zoster virus (VZV) with increased potency are needed, especially to prevent post-herpetic neuralgia. The purpose of this project was to evaluate β-L-1-[5-(E-2-Bromovinyl)-2-(hydroxymethyl)-1,3-dioxolan-4-yl)] uracil (L-BHDU) and 5′-O-valyl-L-BHDU for efficacy, safety, resistance, and mechanism of action in three models of VZV replication: primary human foreskin fibroblasts (HFFs), skin organ culture (SOC) and in SCID-Hu mice with skin xenografts. We found that L-BHDU and valyl-L-BHDU were safe and effective against VZV in culture and in a mouse model. Herpes simplex virus Type 1 was also sensitive to LBHDU in cultured cells. The mechanism of action of L-BHDU and its effect on drugdrug interactions were not known. Given its similar structure to brivudine (BVdU), we addressed whether L-BHDU, like BVdU, inhibits 5-fluorouracil (5-FU) metabolism. LBHDU did not interfere with 5FU metabolism, indicating that L-BHDU is a safer drug than BVdU. However, L-BHDU antagonized the activity of acyclovir (ACV), BVdU and foscarnet (PFA) in cultured cells, which was due to competition for phosphorylation by VZV thymidine kinase (TK). The mechanism of action of L-BHDU was studied by evaluating its activity against related α-herpesviruses and by analyzing resistant VZV strains. VZV strains resistant to L-BHDU (L-BHDUR) were cross-resistant to ACV and BVdU but not to PFA and cidofovir (CDV). Whole genome sequencing of L-BHDUR strains identified mutations in ATP-binding (G22R) and nucleoside binding (R130Q) domains of VZV TK. The purified L-BHDUR TKs were enzymatically inactive and failed to phosphorylate the drug. In wild type VZV- infected cells, L-BHDU was converted to L-BHDU mono- and diphosphate forms; cells infected with L-BHDUR virus did not phosphorylate the drug. We also investigated whether addition of nucleosides reversed LBHDU inhibition of VZV in dividing and quiescent HFFs. Excess thymidine and uridine, but not purines, in proportion to L-BHDU restored VZV replication only in dividing cells, suggesting that the active form of L-BHDU interfered with pyrimidine biosynthesis. Like other herpesviruses, VZV infection induced thymidine triphosphate (dTTP) in confluent cells while L-BHDU treatment decreased the dTTP pool. Some herpesviruses raise dNTP pools by inducing cellular enzymes. However, VZV infection did not increase cellular thymidylate synthase (TS) expression to facilitate viral replication. Furthermore, the active form of L-BHDU did not interfere with cellular metabolism, suggesting a viral target. Further studies are required to identify the target(s) of L-BHDU active form(s).
    • Biological importance of TIMP-2 phosphorylation on MMP-2 activity

      Bourboulia, Dimitra; Bullard, Renee (2016)
      Matrix metalloproteinases (MMPs) are proteolytic enzymes that are secreted from the cell and play an important role in embryonic development and tissue remodeling. In cancer, MMPs are hyperactive, promoting degradation of the ex-tracellular matrix. Enhancement of MMP proteolytic activity allows tumor cells to migrate and invade surrounding tissues, increasing the chance of metastasis. Tissue inhibitor of metalloproteinases (TIMPs) are also known to act extracellu-larly, and are the endogenous inhibitors of MMPs. To inhibit the protease activi-ty of MMPs, the N-terminus of the TIMP protein binds to the catalytic domain of MMP at a ratio of 1:1. Studies from our lab have found that TIMP-2 is phosphor-ylated on three tyrosine residues, and this phosphorylation increases the inter-action with MMP-2. This is the first time that phosphorylation of TIMP-2 has been reported. Fascinatingly, the proto-oncogene tyrosine kinase c-Src was found to phosphorylate TIMP-2. This is significant in that c-Src has not yet been shown to act extracellularly, and there are no details within the current lit-erature describing how this protein may function outside of the cell. In this the-sis, we usedmammalian cells as a model to decipher whether TIMP-2 phosphor-ylation wasable to occur extracellularly,as well as the effect that phosphoryla-tion of TIMP-2 hadon its functionto both inhibit/activate MMP-2. We found that(1) c-Src is able to phosphorylate TIMP-2 extracellularly in conditioned me-vidia; and (2) phosphorylation of TIMP-2 enhances its function of inhibiting MMP-2 proteolytic activity, as well as assisting in the activation of pro-MMP-2. Our results suggest the presence of anovel mechanismin whichphosphoryla-tion of TIMP-2is able to regulate the extracellular environment through en-hanced interaction with MMP-2. The information gained from this research couldlead to development of novel therapies that use phosphorylated TIMP-2 as a means of decreasing cellular migration and invasion with the overall goal of preventing metastasis.
    • Structural and functional characterization of the V-ATPase membrane sector

      Couoh-Carde, Sergio J. (2017)
      The vacuolar ATPase (V1VO-ATPase, V-ATPase) is a H+-pump involved in the acidification of organelles in eukaryotes. Under certain physiological conditions, the VATPase disassociates into an inactive soluble ATPase sector (V1) and a membrane sector (VO) that is impermeable to protons. Due to the lack of detailed structural and functional information, the auto-inhibition mechanism of VO is not well understood. Although the V-ATPase shares a similar structure and rotary catalysis mechanism with the F- and AATPases, V-ATPase’s increased structural complexity and unique mode of regulation suggest other functions beyond its canonical proton pumping. We purified Vo and Vo sub-complexes for structural and functional characterization. First, our ~18 Å cryo-EM model of Vo suggests that c-ring (c8c’c’’) is partially surrounded by the C-terminal membrane integral portion of subunit a (aCT). On the other hand, the soluble N-terminal portion of subunit a (aNT) interacts with subunit d that sits atop of the c-ring. Selective removal of subunit d (VoΔd) did not allow passive proton translocation. Second, the c-ring was isolated and its X-ray crystal structure was solved at ~4 Å resolution. Two c-rings interact to form a gap-junction like structure. The presence of c’’ disrupts the intrinsic and global symmetry of the c8c’ sub-complex, constituting a kinetic barrier during c-ring axial rotation. Third, we discovered that c-ring can act as a large-conductance ion-channel independently from its canonical function in proton pumping. Our biophysical, biochemical, and functional data suggest that exquisite kinetic barriers play a primary role in the auto-inhibition of Vo, and that Vo may have noncanonical functions in intercellular communication.
    • Laminins regulate retinal angiogenesis

      Brunken, William J.; Biswas,Saptarshi (2017)
      Vascular pathologies are the leading causes of acquired blindness in the developed world. While many studies sought to unravel cell-intrinsic and growth factor-mediated regulations of angiogenesis, it is only recently that the role of the basement membrane (BM) components in angiogenesis began to be explored. Several diseases with ocular manifestations are known to alter vascular BM compositions. Therefore, a detailed knowledge of the BM-mediated signals that regulate angiogenesis is of great importance. Laminins, a critical component of the BM, have been shown to regulate several aspects of angiogenesis in the retina. Our laboratory previously demonstrated that the laminin composition of the inner limiting membrane (ILM) regulates astrocyte migration, and consequently vascular expansion along the retinal surface. Here, I examined the role of γ3- and β2-containing laminins in two specific aspects of angiogenesis: 1) vascular branching and endothelial cell proliferation in the nascent vascular plexus, and 2) arterial morphogenesis in the remodeling zone. Results presented in Chapter 2 and Appendix 1 demonstrate that laminin composition of the BM is a critical regulator of microglial recruitment to the growing nascent plexus, where microglia facilitate vascular branching. Furthermore, microglia interact with the astrocyte-derived layer of the vascular BM, and that this interaction regulates iii microglial activation. The activation state of microglia, in turn, regulates endothelial cell proliferation. Results presented in Chapter 3 and Appendix 2 demonstrate that vascular BM laminins are critical regulators of arterial morphogenesis. Specifically, my results reveal a novel mechanism where γ3- containing laminins signal through dystroglycan to induce Dll4/Notch signaling in arterial endothelial cells, regulating proper arterial morphogenesis. Finally, in Appendix 3, I examined the coordinated expression of different laminin chains in the vascular BM. My preliminary results suggest that expressions of laminin α2-, α5- and γ3-chains in the retinal vascular BM are coordinately regulated with the expression of laminin β2-chain. In conclusion, this study sheds light on hitherto unexplored mechanisms by which BM laminins regulate retinal vascular development.
    • Mechanisms of aseptic loosening in total knee arthroplasty

      Cyndari, Karen (2017)
      Introduction: Cemented Total Knee Arthroplasty (TKA) is the gold standard of care for end-stage, multi-etiologic arthritis. While the longevity of these devices may now reach or even surpass 15 years in service, a minority (~10%) will fail prematurely due to a process called aseptic loosening. Historically, this process has been attributed to an inflammatory reaction against wear debris from the TKA polyethylene (PE) insert. However, we have previously estimated supraphysiologic fluid shear stress (FSS) (exceeding 900 Pa) at the cement-bone interface of cemented joint replacements, and examined this as a possible alternative cause of increased osteoclast activity. Methods: We analyzed the cement-bone interlock of tibial and femoral components from en-bloc, postmortem-retrieved, non-revised TKAs to explore the process of loss of fixation, prior to any clinical loosening. For the tibial components, we used a novel protocol wherein whole undecalcified bone+PMMA cement segments from the proximal tibia were embedded in Spurr’s resin and thinly sectioned. Polarized light microscopy was used to identify and quantify co-located PE debris. Using a novel bioreactor developed by our lab called the Multi-Well Fluid Loading (MFL) System, we examined static, subphysiologic, physiologic, and supraphysiologic FSS on RAW 264.7 osteoclast activity and morphology, with and without PE particle treatment. Results: We found no association been the amount or presence of PE debris and the amount or location of loss of interlock in retrieved TKAs. FSS up to 17 Pa increased the ability of osteoclasts to resorb mineral, and FSS up to 4.4 Pa induced the formation of larger osteoclasts. FSS and fluid shear rate interacted together to increase the area of actin rings, while PE treatment increased the number of actin rings and TRAP production. FSS up to 4.4 Pa decreased expression of Ctsk and Il1a, but PE co-treatment abolished this effect. Conclusions: These results indicate there may be alternative factors leading to aseptic loosening apart from PE debris. We demonstrated that osteoclasts are mechanosensitive and able to adjust activity, morphology, and gene expression based on FSS. Further, PE interferes with osteoclast gene downregulation in response to FSS, indicating PE could be a potentiator of osteoclast activity or differentiation.
    • Expression and Function of Paxillin Genes in Zebrafish: A Role in Skeletal Muscle Development

      Turner, Chris; Amack, Jeffrey; Jacob, Andrew (2017)
      Paxillin is a key component of the Integrin adhesion complex, which regulates cellular signaling events in response to extracellular matrix interactions. Although the roles for Paxillin in cell migration have been extensively studied, less is understood about its role in vertebrate development. Depletion of Paxillin from mouse embryos results in early lethality due to impaired cardiovascular development and function, necessitating the development of alternative vertebrate genetic models for examining the role of Paxillin during embryogenesis. Zebrafish have emerged as an experimental vertebrate model amenable to genetic manipulation. The work compiled herein first characterizes the expression profiles for Paxillin genes in zebrafish, and then describes the embryonic phenotypes observed upon mutation of these genes. The identification of two Paxillin genes in zebrafish, pxnaand pxnb, provided new insight into the evolution of this gene family in the Teleost lineage. Both overlapping and unique expression profiles for these genes during zebrafish embryogenesis were uncovered. While both genes are expressed in developing skeletal muscle, pxnawas restricted to the notochord during earlier stages of embryogenesis and pxnbwas expressed in the developing heart. Targeted mutation of either gene alone did not impair embryonic development, suggesting partial functional redundancy between each gene during embryogenesis. Accordingly, combined mutations in pxnaand pxnbrevealed defects during the development ofseveral embryonic tissues. In particular, skeletal muscle morphogenesis iiiwas perturbed in these double mutant embryos. Further characterization revealed that Paxillin genes in zebrafish serve to regulate embryonic myotome shape and proper extracellular matrix composition during muscle development. The amount of Laminin was reduced, while the abundance of Fibronectin persisted, during myotome morphogenesis in Paxillin double mutant embryos. In addition, a role for cytoskeletal contractility in regulatingsubcellular localization of Paxillin in developing skeletal muscle was established. Defects in the development of the cardiovascular system were also apparent in Paxillin double mutant embryos, and future work will focus on characterizing these in further detail. Altogether, this work provides a new vertebrate model to use for understanding the role of Paxillin during embryonic development, and uncovers an unrecognized role for Paxillin in establishing the extracellular matrix of skeletal muscle.
    • The p53-Zn2+ Energy Landscape and Metallochaperone Hypothesis

      Loh, Stewart; Blanden, Adam (2017)
      p53 is a tumor suppressor protein found mutated in essentially half of human cancers, and dysfunctional in nearly all human cancers. Each DNA-binding domain of the protein contains a critical tetrahedrally coordinated Zn2+. In this work, we present a quantitative thermodynamic model describing the energetics of the p53-Zn2+ interaction, as well as the mechanism of action of a new class of therapeutic compounds we call synthetic zinc metallochaperones (ZMC) that restore proper structure and function to many mutant p53s by delivering Zn2+ to the protein in the cell. We combine recombinant protein expression and in vitrobiophysical characterization with cell biology, molecular biology, medicinal chemistry, and live cell imaging to address these issues. Our model for both the mechanism of action of ZMCs and the p53-Zn2+interaction are broadly based on the Metallochaperone Hypothesis originally proposed by our group in 2010. We find that the core tenants of the Metallochaperone Hypothesis are accurate, and have expanded that model to quantitatively describe the link between p53-Zn2+ binding and protein stability noted for decades in the field. We find that at physiological temperature and Zn2+ concentrations, wild-type p53 has a folding energy of ~0 kcal mol-1, and as such is exquisitely sensitive to inactivation by mutation, and rapidly changes the fraction folded in response to changes in Zn2+ concentration. We demonstrate that ZMCs are ionophores, transport Zn2+ from the extracellular space into cells, and rescue mutant p53 by increasing the intracellular free Zn2+ concentration. This increase in Zn2+ stabilizes the mutant proteins via the same mechanism previously described for substrate stabilization of enzymes, and is only seen in a "Goldilocks Zone" of Zn2+ concentrations and ZMC Kds. This presents a fundamentally new way to interact with and reactivate mutant p53s, and raises questions about the potential for biological exploitation of this interaction for signaling or other functions.
    • The Role of TET Methylcytosine Dioxygenase 2 in Myeloid Malignancies

      Mohi, Golam; Nath, Dipmoy (2017)
      TET methylcytosine dioxygenase 2 (TET2) catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an intermediate stage in the DNA demethylation processthat controls the transcription of genes. TET2 is highly expressed in the hematopoietic system and is suggestedto regulate the maintenance and differentiation of hematopoietic stem/progenitors. Mutations in TET2 has been found in different hematological malignancies including Acute Myeloid Leukemia (AML), Chronic Myelomonocytic Leukemia (CMML), Myeloproliferative Neoplasms (MPN), Myelodysplastic Syndrome (MDS), etc. However, the mechanisms by which TET2 controls hematopoiesis and contributes to myeloidmalignancies remainunknown. The direct targets of TET2 have not been elucidated yet. In order to identify the direct targets of TET2, we have performed chromatin immunoprecipitation using TET2 specific antibody followed by genome-wide sequencing. We have found enrichment in binding of TET2 in the promoters of SHP1, SOCS3 and PLZF among other targets. Interestingly, the expression of these genes is also significantly downregulated in the hematopoietic progenitors of TET2 deficient mice. Furthermore, we have found that CMML patients with TET2 mutations also have decreased expression of these genes. Knockdown of TET2 resulted in downregulation of these genes in leukemic Molm14 and murine Ba/F3 cells. Conversely, overexpression of TET2 in monocytic U937 cells increased the expression of these genes. Using methylation specific PCR, we also have observed increased methylation in the promoters of SHP1, SOCS3 and PLZF in TET2 deficient Molm14 and Ba/F3 cells. Also, using methyl/hydroxymethyl-DNA immunoprecipitation, we observed an increase in the 5mC level and decrease in the 5hmC level in the promoter region of these genes suggesting that TET2 directly regulates the expression of these genes by regulating the methyl and hydroxymethyl level of the promoter of these genes. Although loss of function of TET2 has been associated with multiple hematopoietic malignancies, TET2 is most commonly mutated in CMML with almost 50% patients bearing TET2 mutations. Interestingly, TET2 mutations are frequently associated with CBL mutations in CMML. In order to assess the concurrent effects of TET2 and CBL deficiencies, we generated TET2 CBL double knockout mice. We observed that simultaneous deletion of TET2 and CBL resulted in increased leukocytes and neutrophil and enhanced splenomegaly compared to control mice. The double knockout mice showed increase in the granulocyte macrophage progenitors and a significant expansion of the stem progenitor cell population. The overall survival of these mice also reduced substantially. It suggests that concurrent deletion of TET2 and CBL increased the severity of the CMML like disease in mice and thus TET2 and CBL deletion may cooperate in the pathogenesis of CMML. Although most studies suggest a tumor suppressor function of TET2, we also have found a tumor promoter function, especially in MLL rearranged leukemia. We have found that knockdown of TET2 resulted in decreased proliferation in MLL-AF9 positive Molm14 leukemia cells and murine Ba/F3 MLL-AF9 expressing cells. Conversely overexpression of TET2 significantly increased the proliferation level of Molm14 cells. In orderto understand the in vivo role of TET2 in MLL-AF9 mediated leukemia, we performed a retroviral BMT experiment. Whereas the expression of MLL-AF9 in wild type BM resulted in marked increase in WBC and NE and splenomegaly, the deletion of TET2 reduced the white blood cell and neutrophil count and also caused reduction in the spleen size. MLL-AF9 overexpression resulted in the increase in hematopoietic stem/progenitor cells and granulocyte macrophage progenitors and granulocyte/monocyte precursors which was significantly reduced in TET2 KO MLL-AF9 mice. There was a significant reduction of the hematopoietic colony formation ability mediated by MLL-AF9 in TET2 KO mice. The overall survival of the knockout mice was markedly improved compared to the control MLL-AF9 mice. Together these results suggest a tumor promoter role of TET2. Taken together, all the results indicate a dual role of TET2 in myeloid leukemia.
    • POST-TRANSLATIONAL REGULATION OFCO-CHAPERONES AFFECTS HSP90 DRUG SENSITIVTY IN CANCER

      Mollapour, Mehdi; Dunn, Diana (2017)
      Heat Shock Protein-90 (Hsp90) is a molecular chaperone critical to thestability and activity of over 200 proteins known as “clients” including many oncogenes. Hsp90 chaperone function is linked to its ability to hydrolyze ATP and Hsp90 drugs inhibit its activity leading to the degradation of clients, thus making Hsp90 an attractive target for cancer therapy. The Hsp90 chaperone cycle is fine-tuned by another group of proteins called co-chaperones. They modifythe cycle, allowing Hsp90 to chaperone different pools of clients. Post-translational modifications (PTM) of Hsp90 and its co-chaperones can also regulate the chaperone cycle, and affect Hsp90 drug sensitivity. Here it is shownthat c-Abl kinase phosphorylates Y223in the co-chaperoneAha1, promotingits interaction with and stimulation of Hsp90 ATPase activity. Pharmacologic inhibition of c-Abl prevents the Aha1-Hsp90 interaction thereby, hypersensitizing cancer cells to Hsp90 inhibitors.Another co-chaperone of Hsp90, protein phosphatase-5 (PP5), mediates thede-phosphorylation of the co-chaperone Cdc37which is an essentialprocessfor the activation of kinase clients. The crystal structure of phospho-Cdc37 bound to the catalytic domain of PP5revealed elements of substrate specificity within the phosphatase cleft. Hyperactivityandhypoactivity of PP5 increasedHsp90 binding to its inhibitor, providing insight into increasingthe efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors.PP5 is autoinhibited by intramolecular interactions that can be activated by anumber of cellular factors, includingHsp90. Casein kinase-1δ (CK1δ)-mediated phosphorylation of T362-PP5, was identified as an integral step for PP5 activation, independent of binding to Hsp90. Additionally, the tumor suppressor von Hippel-Lindau (VHL), the substrate recognition component of the VCB-E3-ubiquitin ligase, was found to interact with and multi-monoubiquitinate K185/K199-PP5 for proteasomal degradationin an oxygen-independent manner. Furthermore, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines or patient tumors exhibit elevated PP5 levels. Down-regulation of PP5 caused apoptosis inccRCC cells, suggesting a prosurvival role for PP5 in ccRCC.Thisevidence suggests that inhibition of the enzymes that target and catalyze the PTM of Hsp90 and co-chaperones can act synergistically with Hsp90 inhibitors, providingnovel therapeutic strategiesto enhance the efficacy of Hsp90 inhibitors in cancer cells.
    • Characterization of Hic-5 in Cancer Associated Fibroblasts: A Role in Extracellular Matrix Deposition and Remodeling

      Turner, Christopher; Goreczny, Gregory (2017)
      Hic-5 (TGFβ1i1) is a focal adhesion scaffold protein that has previously been implicated in many cancer-related processes. However, the contribution of Hic-5 during tumor progression has never been evaluated, in vivo. In Chapter 2 of this thesis, I crossed our Hic-5 knockout mouse with the MMTV-PyMT breast tumor mouse model to assess the role of Hic-5 in breast tumorigenesis. Tumors from the Hic-5 -/-;PyMT mouse exhibited an increased latency and reduced tumor growth. Immunohistochemical analysis of the Hic-5 -/-;PyMT tumors revealed that the tumor cells were less proliferative. However isolated tumor cells exhibit no difference in growth rate. Surprisingly, Hic-5 expression was restricted to the tumor stroma. Further analysis showed that Hic-5 regulates Cancer Associated Fibroblast (CAF) contractility and differentiation which resulted in a reduced ability to deposit and reorganize the extracellular matrix (ECM) in two-and three-dimensions. Furthermore, Hic-5 dependent ECM remodeling supported the ability of tumor cells to metastasize and colonize the lungs.The molecular mechanisms by which CAFs mediate ECM remodeling remains incompletely understood. In Chapter 3 of this thesis, I show that Hic-5 is required to generate fibrillar adhesions, which are specialized structures that are critical for the assembly of fibronectin fibers. Hic-5 was found to promote fibrillar adhesion formation through a newly characterized interaction with tensin1, a scaffold protein that binds to β1 integrin and actin. Furthermore, this interaction was mediated by Src-dependent phosphorylation of Hic-5 in two and three-dimensional matrix environments to prevent β1 integrin internalization and subsequent degradation in the lysosome. This work highlights the importance of the focal adhesion protein, Hic-5 during breast tumorigenesis and provides insight into the molecular machinery driving CAF-mediated ECM remodeling.