• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateDutchessEmpireFarmingdaleFinger LakesFredoniaMaritimeNew PaltzNiagaraOld WestburyOneontaOnondagaOptometryOswegoPlattsburghPurchase CollegePolytechnic InstituteSUNY Office of Workforce Development and Upward MobilitySUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of Novel Technologies for Direct Cellular Patterning for the Establishment of Well Controlled Microenvironments to Facilitate Studies on Cellular Signaling, Sensing, and Other Diffusion-Based Phenomena

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hynes-Dissertation.pdf
    Size:
    2.266Mb
    Format:
    PDF
    Description:
    William Hynes Dissertation
    Download
    Thumbnail
    Name:
    hynes-license.pdf
    Size:
    57.57Kb
    Format:
    PDF
    Description:
    Hynes License
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Hynes, William
    Keyword
    bioprinting
    cellular signaling
    syntrophic relationships
    COMETS
    Date Published
    2016-05-07
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1133
    Abstract
    This work focuses on the utilization of novel bioprinting technologies for the investigation of cellular signaling, sensing, and other diffusion-based phenomena with spatiotemporal dependencies. Two different printing techniques were developed for the purpose of fabricating controlled microenvironments comprised of cells, nutrients, hydrogels, and soluble signaling molecules in a repeatable fashion. The first application explored was the development of a novel, bioprinted, cell-based biosensor as a nondestructive method for the monitoring of the cellular redox environment. Mammalian cells were engineered to express a redox sensitive protein and were patterned and immobilized within a photopolymerizing hydrogel matrix, resulting in biocompatible, three-dimensional microenvironments which supported cell growth and facilitated small molecule sensing. Exposure of the printed, redox sensitive cells to oxidative and reductive compounds and monitoring via confocal microscopy demonstrated proper and reversible functioning of the living biosensor. Bioprinting was also used to generate complex, micro-scale, multi-species populations of bacteria in order to evaluate the effects of distance and various forms of competition on syntrophic relationships. An artificial, syntrophic bacterial consortium was printed within controlled microenvironments confined by geometry and nutrient availability. The growth of the printed strains was monitored, analyzed, and compared to the predictions of an experimental, computational bacterial growth model known as COMETS. Results indicated that the general trends exhibited in vitro by most of the examined micro-scale interactions can be predicted in silico, and that the effects of microbial interactions on the micro-scale can differ considerably than those observed at the macro-scale.
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.