• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY Office of Community Colleges and the Education PipelineSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Assessing a Multi-Electron Beam Application Approach for Semiconductor Process Metrology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dissertation_M Mukhtar_Final.pdf
    Size:
    9.302Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    Distribution License_Mukhtar.pdf
    Size:
    401.2Kb
    Format:
    PDF
    Description:
    consent to place in digital ...
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Mukhtar, Maseeh
    Thiel, Bradley; Dissertation Committee Chair
    Bello, Abner; Dissertation Committee
    Diebold, Alain; Dissertation Committee
    Cady, Nathan; Dissertation Committee
    Geer, Robert; Dissertation Committee
    Sung, Woongje; Dissertation Committee
    Keyword
    Critical dimension (CD)
    Defect detection
    Dimensional metrology
    Electron beam inspection (EBI)
    Java Monte Carlo simulator for Secondary Electrons (JMONSEL)
    Massively parallel
    Multiple electron beam
    Multi-column
    Scanning electron microscopy (SEM)
    Wafer inspection
    Date Published
    2018
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1132
    Abstract
    Radical and disruptive technological approaches regularly require experimental prototypes be built, which is difficult to justify considering their oft-prohibitive requirements in terms of financial and/or time commitments. It is also frequently the situation that use cases for new technologies are not entirely worked out precisely which in turn make it even more difficult to build prototypes but the analysis of simulation data sets from virtual samples can be used to predict sensitivity to the devised signal, detection limits, and impact of design rules and material sets. The results can thus be used to guide prototype design. The aim of this work is to develop and demonstrate a predictive approach to technology assessment and prototype design. This work will focus on two such disruptive technology concepts: electron beam defect inspection and critical dimension measurement. These two concepts are based on the transfer from conventional process metrology technologies i.e., brightfield inspection and optical critical dimension scatterometry to multi-electron beam approaches. Here, a multi-scale modeling approach is used to simulate data streams nominally generated by virtual tools inspecting virtual wafers. To this end, Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for aggressively-scaled FinFET-type designs. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure the effect of detection chain noise and frequency dependent system response can be made, allowing for targeting of best recipe parameters for multi-electron beam inspection validation experiments. Ultimately, leading to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing. Simulated images are also executed for measurement of critical dimensions of the abovementioned class of FinFETs. Similarly, validation experiments for multi-electron critical dimension measurements may use the information extracted for development of volume manufacturing metrology systems.
    Description
    A Dissertation Submitted to the State University of New York in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Magnesium Oxide Tunneling Current and Ferromagnetic Film Characterization

      Bull, Horace (SUNY Polytechnic Institute, 2016-05-01)
      Magnetic Tunnel Junctions are a very promising technology with the potential to replace numerous forms of computer memory a well as a wide range of other applications. Three novel studies are done demonstrating various aspects of MTJ design and manufacturing showing their importance in understanding device performance. First, a Vibrating Sample Magnetometer (VSM) study comparing Co40Fe40B20 and Co20Fe60B20 films of varying thicknesses between 0.6 nm and 3.2 nm is reported. Greater iron content is shown to increase the overall magnetic moment of the samples. Second, a Current in Plane Tunneling (CIPT) study is done showing the dependence Magnetoresistance (MR) has on the thickness of the MTJ free layer and the crystallinity of the active region of devices. A full MTJ device stack is developed, with free layer thicknesses from 0.6-1.75 nm and 1.5-3.3 nm creating a wedge profile on each sample wafer. CIPT shows a significant increase to MR with anneal, verifying the presence of the [001] crystal structure in post anneal samples using TEM. Third, Ta/Co40Fe40B20/MgO/Co40Fe40B20/Ta thin film metal-insulator-metal capacitors were developed to measure the tunneling effect and how it changes as a result of MgO thickness and CoFeB crystallinity. Devices were designed with: varied MgO thickness from 0.5 nm to 2 nm thick, with pre and post anneal CoFeB. Current-Voltage data was collected and device resistance was found to have a linear dependence on MgO thickness in the post anneal CoFeB/MgO/CoFeB samples. The uniformity of the IV data indicates potential for use monitoring devices during MTJ manufacturing.
    • Thumbnail

      Passively powered pH sensor for study of gastric disorders

      Piaquadio, Nicholas; Hart, Kevin; Hart, Sean; Lundgren, Tucker (2019-05)
      A fully passive wireless implantable pH sensor that is implantable in an animate silicone stomach environment has been developed for the study of gastric disorders. The system has applications in medical training and testing. It can be used for pH monitoring as well as testing the efficiency of antacid medication. To achieve this, wireless power is sent from a reading circuit, via a class E amplifier connected to an inductive coil. The implanted circuit harvests the energy sent with a charge pump, and returns the measured pH via Frequency Shift Keying (FSK) modulation. The electronic components were simulated using Keysight Advanced Design System (ADS), prototyped on breadboards, amended, and finally manufactured onto Printed Circuit Boards (PCBs). To make the stomach, an injection molding process was employed using a sacrificial wax inner core and a 3D printed mold. The completed stomach model features 5mm thick walls at life-size scale, and demonstrates realistic digestive motion. The current implant design uses a traditional pH probe for proof of concept, fits within the stomach at 2.5cm by 5cm, and is capable of returning readings at a distance of up to 4 inches with an accuracy within 0.2pH. The reader coil can read pH once every ten minutes for 43 hours on a single charge.
    • Thumbnail

      3-D printed heterogenous substrate bandpass filters

      Nesheiwat, Issa (2021-09)
      With the demand for increasing frequencies in today’s communications systems, compact integrated circuits are challenging to achieve. Compact filters have typically been realized by modifying the circuit design including using LC resonators, defective ground structures, and adjusting the length ratios of resonators. Heterogenous substrates with controlled regions of dielectric loading offer a new design approach when it comes to manufacturing an RF component. In this thesis, additive manufacturing is used to selectively place low-K and high-K dielectric materials to achieve a compact form factor, improved bandwidth, and higher suppression in re-entry modes. First, microstrip coupled strip lines are simulated to model the basic coupling effects of loading a substrate. Next, three 2.45GHz parallel coupled bandpass microstrip filters are designed with differing substrates: low-K, high-K and high-K loaded to analyze the impact of loading within the substrate. The filter substrates are manufactured using a dual-extrusion FDM 3-D printer to combine both dielectrics, low-K ABS, and high-K PrePerm ABS1000, into a single heterogeneous substrate. Compared to the low-K dielectric alternative, the high-K loaded filter demonstrated a 30.8% decrease in length, while maintaining similar bandwidth and suppression of re-entry modes. Compared to the high-K filter, the high-K loaded filter showed a 9.4dB reduction in re-entry mode suppression, while maintaining similar footprint size.

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.