• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization and Control of the Surface of the Topological Insulator Bi2Se3

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Avery-Green-Dissertation.pdf
    Size:
    9.304Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Green, Avery James
    Diebold, Alain; Advisor
    Keyword
    Topological Insulator Materials
    micromechanically exfoliated surfaces
    topologically non-trivial materials
    optical characterization methods
    spectroscopic ellipsometry
    thermal decapping
    Date Published
    2017-12
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1131
    Abstract
    The field of topological insulator (TI) materials is new. The ideal TI contains surface states in helical Dirac cones that can be used for spintronics or interconnect applications. Of the TI class, Bi2Se3 is the most promising for applications due to its stoichiometric composition, its relatively large band gap (0.3 eV), and the central (??-point) position of the Dirac cone in its 2D surface band structure. Although the theoretical solid-state models that the TI field has produced are powerful and unique, their novel emergent physical properties are not universally observed in every sample. These materials are difficult to grow and maintain under ambient conditions. Growths tend to either not be applicable to wafer-scale production or produce high polycrystallinity, and all samples experience natural oxidation, band bending, and intrinsic n-doping, which generates spin-degenerate or bulk conduction. This thesis contains a primer on topologically non-trivial materials, and two studies aimed at understanding and minimizing defects at the surface of Bi2Se3. In the first, the aging process of Bi2Se3 when exposed to air at room temperature is investigated. The time scale and topographic changes of the oxidation process at micromechanically exfoliated surfaces are measured, and an optical model of the bulk and oxide layers are developed. The surface appears to oxidize starting at 2 hours after exfoliation, and continuing through 1.5 weeks, by which time, the oxide layer growth has reached an asymptote of 1.9 nm. New optical characterization methods are developed to monitor the orientation of the crystal (via second harmonic generation) and to measure the oxide growth at the surface (using spectroscopic ellipsometry and the derived dielectric functions of the bulk and oxide layers). The goal of the second study is to assess the use of Se capping and subsequent thermal decapping to preserve a pristine surface and maintain a constant Fermi level. This was measured by annealing samples in a UHV environment to successively higher temperatures until the Bi2Se3 film decomposed, and measuring the surface crystallinity, topography, surface chemistry, and Fermi level between each anneal. Thermally decapping samples has no measurable effect on crystallinity, minimal effect on surface topography, reveals the expected Bi-Se surface bonds, and retains a mid-gap Fermi level. This may serve as a reference to improve the fabrication process of devices that include Bi2Se3.
    Description
    A Dissertation Submitted to the State University of New York in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.