• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Doctoral Dissertations
    • Colleges of Nanoscale Science and Engineering Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nanoscale Schottky Barrier Visualization Utilizing Computational Modeling and Ballistic Electron Emission Microscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    WestlyNoltingThesis.pdf
    Size:
    11.90Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    Distribution_License_Nolting.pdf
    Size:
    224.2Kb
    Format:
    PDF
    Description:
    consent form to allow content ...
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Nolting, Westly
    LaBella, Vincent; Advisor
    Keyword
    metal-semiconductor systems
    semiconductor interfaces
    nanoscale
    electrostatics
    ballistic electron emission microscopy (BEEM)
    Schottky barrier
    semiconductors
    Date Published
    2018-05
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1130
    Abstract
    Understanding the properties and performance of semiconductor interfaces on the nanoscale advances semiconductor device technology which has had tremendous impact on nearly all aspects of our daily lives. Investigating the nanoscale fluctuations in the electrostatics of metal-semiconductor, or Schottky, interfaces is crucial. However, techniques for directly measuring the electrostatics at an interface are limited. Current state-of-the-art finFETs use metal-semiconductor silicides, such as Ti-Si/Si, for Schottky source-drain contacts. Studying the underlying physics of the Schottky barrier interface of silicides and other metal-semiconductor systems is critical for measuring the Schottky barrier accurately, which can be accomplished with ballistic electron emission microscopy (BEEM), a scanning tunneling microscopy (STM) based technique. In this work, the visualization of the interface to nanoscale dimensions is enhanced by computational modelling of threshold histograms acquired by the BEEM measurement technique. Modelling using a kinetic Monte-Carlo approach is utilized to simulate the distributions of barrier heights that includes effects from the interface and transport of the hot electrons as well as indication of a multi-barrier heights present at the interface. The aid of this modelling enables the discovery of several underlying properties of the interface. Analyzing the parameters of the modelling and comparing to measured data provides detailed insight into the effects that both electron scattering and incomplete silicide formation in W/Si(001) and WSi2/Si(001) have upon the transport of electrons through these structures, which is difficult to detect with conventional current-voltage measurements. The modelling also includes simulation of multiple barriers present at the interface due to the intermixing of similar metals such as Au and Ag at the interface of Si(001) In this regard, Schottky barrier visualization as the combination of histograms, mapping, and modelling provides a new insight into the local nanoscale phenomenon of the Schottky barrier. This thesis investigates the modelling of these metal-semiconductor systems and uses modelling to look at metal thickness dependent effects on the Schottky barrier from Fermi-level pinning in Au/Cr-Si/Si(001) and Au/Cr-Si/Si(111) silicide.
    Description
    A Dissertation Submitted to the State University of New York in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering
    Collections
    Colleges of Nanoscale Science and Engineering Doctoral Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.