Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:44:52Z
dc.date.accessioned2020-06-22T14:35:31Z
dc.date.available2018-04-09T18:44:52Z
dc.date.available2020-06-22T14:35:31Z
dc.date.issued1993
dc.identifier.citationNorthshield, S. (1993). Amenability and superharmonic functions. Proceedings of the American Mathematical Society, 119(2). http://doi.org/10.1090/S0002-9939-1993-1164149-7en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1125
dc.descriptionThis article has been published in the October 1993 issue of Proceedings of the American Mathematical Society.en_US
dc.description.abstractLet G be a countable group and u a symmetric and aperiodic probability measure on G . We show that G is amenable if and only if every positive superharmonic function is nearly constant on certain arbitrarily large subsets of G. We use this to show that if G is amenable, then the Martin boundary of G contains a fixed point. More generally, we show that G is amenable if and only if each member of a certain family of G-spaces contains a fixed point.en_US
dc.languageen_USen_US
dc.language.isoen_USen_US
dc.publisherProceedings of the American Mathematical Societyen_US
dc.subjectAmenable groupen_US
dc.subjectsuperharmonic functionen_US
dc.subjectMartin boundaryen_US
dc.subjectrandom walken_US
dc.titleAmenability and superharmonic functionsen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:31Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
520.5Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record