Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:41:28Z
dc.date.accessioned2020-06-22T14:35:31Z
dc.date.available2018-04-09T18:41:28Z
dc.date.available2020-06-22T14:35:31Z
dc.date.issued1995
dc.identifier.citationNorthshield, S. (1995). On the spectrum and Martin boundary of homogeneous spaces. Statistics and Probability Letters, 22(4). http://doi.org/10.1016/0167-7152(94)00077-Len_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1122
dc.descriptionThis article has been published in the March 1995 issue of Statistics and Probability Letters.en_US
dc.description.abstractGiven a conservative, spatially homogeneous Markov process X on an homogeneous spaces χ, we show that if the bottom of the spectrum of the generator of X is zero then the Martin boundary of contains a unique point fixed by the isometry group of χ.en_US
dc.languageen_USen_US
dc.language.isoen_USen_US
dc.publisherStatistics and Probability Lettersen_US
dc.subjectHomogeneous spaceen_US
dc.subjectMarkov processen_US
dc.subjectSpectrumen_US
dc.subjectMartin boundaryen_US
dc.subjectFixed pointen_US
dc.subjectAmenable groupen_US
dc.titleOn the spectrum and Martin boundary of homogeneous spacesen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:31Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
265.2Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record