Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-05T20:02:14Z
dc.date.accessioned2020-06-22T14:35:30Z
dc.date.available2018-04-05T20:02:14Z
dc.date.available2020-06-22T14:35:30Z
dc.date.issued2011
dc.identifier.citationNorthshield, S. (2011). Integrating across Pascal's triangle. Mathematical Analysis and Applications, 374(2). http://doi.org/10.1016/j.jmaa.2010.09.018en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1120
dc.descriptionThis article has been published in the Journal of Mathematical Analysis and Applications: doi:10.1016/j.jmaa.2010.09.018en_US
dc.description.abstractSums across the rows of Pascal's triangle yield powers of 2 while certain diagonal sums yield the Fibonacci numbers which are asymptotic to powers of the golden ratio. Sums across other diagonals yield quantities asymptotic to powers of c where c depends on the direction of the diagonals. We generalize this to the continuous case. Using the gamma function, we generalize the binomial coefficients to real variables and thus form a generalization of Pascal's triangle. Integration of these generalized binomial coefficients over various families of lines and curves yield quantities asymptotic to powers of some c where c can be determined explicitly. Finally, we revisit the discrete case.en_US
dc.languageen_USen_US
dc.publisherMathematical Analysis and Applicationsen_US
dc.subjectGamma functionen_US
dc.subjectBinomial coefficienten_US
dc.subjectPascal's triangleen_US
dc.titleIntegrating across Pascal's triangleen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:30Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
150.7Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record