Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:50:34Z
dc.date.accessioned2020-06-22T14:35:30Z
dc.date.available2018-04-09T18:50:34Z
dc.date.available2020-06-22T14:35:30Z
dc.date.issued1991
dc.identifier.citationNorthshield, S. (1991). Geodesics and Bounded Harmonic Functions on Infinite Graphs. Proceedings of the American Mathematical Society, 113(1). http://doi.org/10.1090/S0002-9939-1991-1076576-5en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1119
dc.descriptionThis article has been published in the September 1991 issue of Proceedings of the American Mathematical Society.en_US
dc.description.abstractIt is shown there that an infinite connected planar graph with a uniform upper bound on vertex degree and rapidly decreasing Green's function (relative to the simple random walk) has infinitely many pairwise finitely-intersecting geodesic rays starting at each vertex. We then demonstrate the existence of nonconstant bounded harmonic functions on the graph.en_US
dc.languageen_USen_US
dc.language.isoen_USen_US
dc.subjectRandom walken_US
dc.subjectplanar graphsen_US
dc.subjectgeodesic raysen_US
dc.subjectharmonic functionsen_US
dc.titleGeodesics and Bounded Harmonic Functions on Infinite Graphsen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:30Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
402.0Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record