Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-05T19:53:36Z
dc.date.accessioned2020-06-22T14:35:29Z
dc.date.available2018-04-05T19:53:36Z
dc.date.available2020-06-22T14:35:29Z
dc.date.issued2013
dc.identifier.citationNorthshield, S. (2013). A root-finding algorithm for cubics. Proceedings of the American Mathematical Society, 141(2). http://doi.org/10.1090/S0002-9939-2012-11324-3en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1113
dc.descriptionThis article has been published in Proceedings of the American Mathematical Society: https://doi.org/10.1090/S0002-9939-2012-11324-3en_US
dc.description.abstractNewton's method applied to a quadratic polynomial converges rapidly to a root for almost all starting points and almost all coefficients. This can be understood in terms of an associative binary operation arising from 2 x 2 matrices. Here we develop an analogous theory based on 3 x 3 matrices which yields a two-variable generally convergent algorithm for cubics.en_US
dc.languageen_USen_US
dc.language.isoen_USen_US
dc.publisherProceedings of the American Mathematical Societyen_US
dc.subjectNewton's methoden_US
dc.subjectiterative algorithmen_US
dc.subjectgenerally convergenten_US
dc.titleA root-finding algorithm for cubicsen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:29Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
140.8Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record