Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:47:32Z
dc.date.accessioned2020-06-22T14:35:29Z
dc.date.available2018-04-09T18:47:32Z
dc.date.available2020-06-22T14:35:29Z
dc.date.issued1992
dc.identifier.citationNorthshield, S. (1992). Cogrowth of Regular Graphs. Proceedings of the American Mathematical Society, 116(1). http://doi.org/10.1090/S0002-9939-1992-1120509-0en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1109
dc.descriptionThis article has been published in the September 1992 issue of Proceedings of the American Mathematical Society.en_US
dc.description.abstractLet G be a d-regular graph and T the covering tree of G. We define a cogrowth constant of G in T and express it in terms of the first eigenvalue of the Laplacian on G. As a corollary, we show that the cogrowth constant is as large as possible if and only if the first eigenvalue of the Laplacian on G is zero. Grigorchuk's criterion for amenability of finitely generated groups follows.en_US
dc.languageen_USen_US
dc.publisherProceedings of the American Mathematical Societyen_US
dc.subjectRegular graphen_US
dc.subjectcovering treeen_US
dc.subjectamenable groupen_US
dc.subjectrandom walken_US
dc.titleCogrowth of Regular Graphsen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:29Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
284.2Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record