Show simple item record

dc.contributor.authorNorthshield, Sam
dc.date.accessioned2018-04-09T18:26:18Z
dc.date.accessioned2020-06-22T14:35:28Z
dc.date.available2018-04-09T18:26:18Z
dc.date.available2020-06-22T14:35:28Z
dc.date.issued1998
dc.identifier.citationNorthshield, S. (1998). A note on the Zeta Function of a Graph. Journal of Combinatorial Theory Series B, 74. http://doi.org/10.1006/jctb.1998.1861en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12648/1107
dc.descriptionThis article has been published in the November 1998 issue of Journal of Combinatorial Theory Series B.en_US
dc.description.abstractThe number of splanning trees in a finite graph is first expressed as the derivative (at 1) of a determinant and then in terms of a zeta function. This generalizes a result of Hashimoto to non-regular graphs.en_US
dc.languageen_USen_US
dc.language.isoenen_US
dc.publisherJournal of Combinatorial Theory Series Ben_US
dc.titleA note on the Zeta Function of a Graphen_US
dc.typeArticleen_US
refterms.dateFOA2020-06-22T14:35:28Z
dc.description.institutionSUNY Plattsburgh


Files in this item

Thumbnail
Name:
fulltext.pdf
Size:
109.9Kb
Format:
PDF
Description:
full-text

This item appears in the following Collection(s)

Show simple item record