• Nanoscale Schottky Barrier Visualization Utilizing Computational Modeling and Ballistic Electron Emission Microscopy

      Nolting, Westly; LaBella, Vincent; Advisor (2018-05)
      Understanding the properties and performance of semiconductor interfaces on the nanoscale advances semiconductor device technology which has had tremendous impact on nearly all aspects of our daily lives. Investigating the nanoscale fluctuations in the electrostatics of metal-semiconductor, or Schottky, interfaces is crucial. However, techniques for directly measuring the electrostatics at an interface are limited. Current state-of-the-art finFETs use metal-semiconductor silicides, such as Ti-Si/Si, for Schottky source-drain contacts. Studying the underlying physics of the Schottky barrier interface of silicides and other metal-semiconductor systems is critical for measuring the Schottky barrier accurately, which can be accomplished with ballistic electron emission microscopy (BEEM), a scanning tunneling microscopy (STM) based technique. In this work, the visualization of the interface to nanoscale dimensions is enhanced by computational modelling of threshold histograms acquired by the BEEM measurement technique. Modelling using a kinetic Monte-Carlo approach is utilized to simulate the distributions of barrier heights that includes effects from the interface and transport of the hot electrons as well as indication of a multi-barrier heights present at the interface. The aid of this modelling enables the discovery of several underlying properties of the interface. Analyzing the parameters of the modelling and comparing to measured data provides detailed insight into the effects that both electron scattering and incomplete silicide formation in W/Si(001) and WSi2/Si(001) have upon the transport of electrons through these structures, which is difficult to detect with conventional current-voltage measurements. The modelling also includes simulation of multiple barriers present at the interface due to the intermixing of similar metals such as Au and Ag at the interface of Si(001) In this regard, Schottky barrier visualization as the combination of histograms, mapping, and modelling provides a new insight into the local nanoscale phenomenon of the Schottky barrier. This thesis investigates the modelling of these metal-semiconductor systems and uses modelling to look at metal thickness dependent effects on the Schottky barrier from Fermi-level pinning in Au/Cr-Si/Si(001) and Au/Cr-Si/Si(111) silicide.
    • ULTRATHIN HIGH-K OXIDES FOR AREA-SELECTIVE DEPOSITION AND CHARACTERIZATION BY BALLISTIC ELECTRON EMISSION MICROSCOPY AND X-RAY PHOTOEMISSION SPECTROSCOPY

      Rogers, Jack (2021-05)
      Insulators play an important role in the architecture and resulting performance of semiconductor devices manufactured today. Materials such as HfO2 and Al2O3 are utilized as gate oxides and spacers to control leakage current and enable bottom-up self-aligned patterning of device features. Understanding the electrostatic barrier that forms at the metal-oxide-semiconductor (MOS) interface is crucial in the development of field effect transistors and other devices, especially as the scaling of device features continues to shrink into the nanoscale. Characterization of the barrier height using current-voltage (IV) and capacitance-voltage (CV) techniques provides only a spatially averaged view of the interface, and is incapable of accounting for local nonuniformity which arises at nanoscale dimensions. Additionally, common lithographic strategies for patterning small feature oxides are limited by printing misalignments such as edge placement error (EPE), and in order to achieve smaller pitch sizes lithography steps must be repeated multiple times which adds time and cost to the process. The feasibility of uniform, cost-effective insulator films at the 5 nm technology node and beyond relies on the development of new deposition strategies. In this thesis, hafnium oxide grown using atomic layer deposition (ALD) is examined with ballistic electron emission microscopy (BEEM). Localized nonuniformities in the barrier height are found to exist for two identically prepared samples which reveal three distinct electrostatic barriers at the buried Au/HfO2/SiO2/Si-p interface, including a novel barrier found at 0.45 eV due to ultrathin HfO2. The results uncover changes in electrostatic behavior of the film which are otherwise impossible to detect using spatially averaged techniques. These variations in barrier height are visualized in a novel way that produces spatial maps showing transitions between high energy and lower energy barriers across a few nanometers. The resolution of this mapping technique is determined by comparing the measured barrier heights of Au/Si(001) and Au/Si(111) interfaces. Momentum conservation and electron scattering result in slightly different barrier heights for both interfaces that depends on metal thickness. The Rayleigh criterion is applied to the barrier height distributions as a function of metal thickness, resulting in a 10 meV resolution. Both aluminum oxide and hafnium oxide are also selectively grown on patterned metal / low-k silicon wafers using ALD. Self-assembled monolayer (SAM) materials such as octodecanethiol (ODT) and dodecanethiol (DDT) -which are functionalized to metal -are first deposited on the copper lines in order to block high-k film deposi¬tion on metal. Both HfO2 and Al2O3 are shown to selectively cover the low-k lines for linespace pitches greater than 100 nm and 5 mM concentration of SAM, and better selectivity is achieved for smaller pitches using lower SAM concentrations. Selectivity is measured qualitatively and quantitatively using x-ray photoemission spectroscopy and confirmed with transmission electron microscopy.