• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Social Media Emoji Analysis, Correlations and Trust Modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    M-Preisendorfer-Thesis.pdf
    Size:
    6.079Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Preisendorfer, Matthew
    Sengupta, Sam; Adviser
    White, Joshua; Adviser
    Tekeoglu, Ali; Adviser
    Keyword
    Emojis
    Twitter
    Social Media
    Trust Modeling
    Demographic Predictions
    Mood Analysis
    Date Published
    2018-01-18
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1090
    Abstract
    Twitter is an ever-growing social-media platform where users post tweets, or small messages, for all of their followers to see and react to. This is old news of course, as the platform first launched over ten years ago. Currently, Twitter handles approximately six thousand new tweets every second, so there is plenty of data to be analyzed. With a character limit of 140 per tweet, emojis are commonly used to express feelings in a tweet without using extra characters that more explaining might use. This is helpful in identifying the mood or state of mind that a person may have been in when writing their tweet. From a computing standpoint, this makes mood analysis much easier. Rather than analyzing a group of words and predicting moods from keywords, we can analyze single (or many) emoji(s), and then match those emojis to commonly expressed emotions and feelings. The objective of this research is to gather large amounts of Twitter data and analyze emojis used to find correlations in societal interactions, and how current events may drive social media interactions and behaviors. By creating topic models for each user and comparing it with the emoji distribution analysis, a trust ”fingerprint” can be created to measure authenticity or genuineness of a given user and/or group of users. The emoji distribution analysis also provides the possibility of demographic predictions. Analysis is not limited to Twitter of course but is used here because the API is free and generally easy to use. This paper aims to prove the validity of emoji analysis as a method of user identification and how their trust models can be used in conjunction with pre-existing models to improve success rates of these models.
    Description
    A Master’s Thesis Presented to Department of Computer and Information Sciences SUNY Polytechnic Institute Utica, New York In Partial Fulfillment Of the requirements for the Master of Science Degree.
    Collections
    SUNY Polytechnic Institute College of Engineering

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.