Name:
shakelli-masters-project.pdf
Size:
2.287Mb
Format:
PDF
Description:
Shakelli Masters Project
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Date Published
2016-05-01
Metadata
Show full item recordAbstract
Cloud storage services are growing at a fast rate and are emerging in data storage field. These services are used by people for backing up data, sharing file through social networks like Facebook [3], Zing Me [2]. Users will be able to upload data from computer, mobile or tablet and also download and share them to others. Thus, system load in cloud storage becomes huge. Nowadays, Cloud storage service has become a crucial requirement for many enterprises due to its features like cost saving, performance, security, flexibility. To design an efficient storage engine for cloud based systems, it is always required to deal with requirements like big file processing, lightweight metadata, deduplication, high scalability. Here we suggest a Big file cloud architecture to handle all problems in big file cloud system. Basically, here we propose to build a scalable distributed data cloud storage that supports big file with size up to several terabytes. In cloud storage, system load is usually heavy. Data deduplication to reduce wastage of storage space caused by storing same static data from different users. In order to solve the above problems, a common method used in Cloud storages, is by dividing big file into small blocks, storing them on disks and then dealing them using a metadata system [1], [6], [19], [20]. Current cloud storage services have a complex metadata system. Thereby, the space complexity of the metadata System is O(n) and it is not scalable for big file. In this research, a new big file cloud storage architecture and a better solution to reduce the space complexity of metadata is suggested.