• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateDutchessEmpireFarmingdaleFinger LakesFredoniaMaritimeNew PaltzNiagaraOld WestburyOneontaOnondagaOptometryOswegoPlattsburghPurchase CollegePolytechnic InstituteSUNY Office of Workforce Development and Upward MobilitySUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High Performance Distributed Big File Cloud Storage

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    shakelli-masters-project.pdf
    Size:
    2.287Mb
    Format:
    PDF
    Description:
    Shakelli Masters Project
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Shakelli, Anusha
    Sengupta, Sam; Adviser
    White, Joshua; Reviewer
    Keyword
    cloud storage
    metadata complexity
    distributed data cloud storage
    Date Published
    2016-05-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1079
    Abstract
    Cloud storage services are growing at a fast rate and are emerging in data storage field. These services are used by people for backing up data, sharing file through social networks like Facebook [3], Zing Me [2]. Users will be able to upload data from computer, mobile or tablet and also download and share them to others. Thus, system load in cloud storage becomes huge. Nowadays, Cloud storage service has become a crucial requirement for many enterprises due to its features like cost saving, performance, security, flexibility. To design an efficient storage engine for cloud based systems, it is always required to deal with requirements like big file processing, lightweight metadata, deduplication, high scalability. Here we suggest a Big file cloud architecture to handle all problems in big file cloud system. Basically, here we propose to build a scalable distributed data cloud storage that supports big file with size up to several terabytes. In cloud storage, system load is usually heavy. Data deduplication to reduce wastage of storage space caused by storing same static data from different users. In order to solve the above problems, a common method used in Cloud storages, is by dividing big file into small blocks, storing them on disks and then dealing them using a metadata system [1], [6], [19], [20]. Current cloud storage services have a complex metadata system. Thereby, the space complexity of the metadata System is O(n) and it is not scalable for big file. In this research, a new big file cloud storage architecture and a better solution to reduce the space complexity of metadata is suggested.
    Collections
    SUNY Polytechnic Institute College of Engineering

    entitlement

     

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.