• Login
    View Item 
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    •   Home
    • Doctoral Degree Granting Institutions
    • SUNY Polytechnic Institute
    • SUNY Polytechnic Institute Master's Theses and Projects
    • SUNY Polytechnic Institute College of Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of SUNY Open Access RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsDepartmentThis CollectionPublication DateAuthorsTitlesSubjectsDepartmentAuthor ProfilesView

    My Account

    LoginRegister

    Campus Communities in SOAR

    Alfred State CollegeBrockportBroomeCantonDownstateEmpireFashion Institute of TechnologyFredoniaMaritimeNew PaltzOneontaOptometryOswegoPlattsburghSUNY Polytechnic InstituteSUNY PressUpstate Medical

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Live Tweet Map with Sentimental Analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    kotrika-final-cs-project.pdf
    Size:
    1.568Mb
    Format:
    PDF
    Description:
    Rohila Kotrika CS Final Project
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Kotrika, Rohila
    Chen-Fu Chiang; Reviewer
    Saumendra, Sengupta; Advisor
    Andriamanalimanana, Bruno; Reviewer
    Keyword
    Twitter
    Google Map API
    Twitter Live API
    Sentimental Evaluation
    Sentiment API
    Natural Language Processing API
    Date Published
    2016-05-01
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/20.500.12648/1074
    Abstract
    This project basically aims to build a system for the real-time analysis of the trends and public views around the whole world by storing and analyzing the stream of tweets from the Twitter live API which produces a huge amount of data . The tweets, tweet ID, time and other relevant elements are stored into a database and are represented in a map that is being updated in near real time with the help of Google map API. This project also aims to achieve the sentimental analysis of the tweets by sending the tweets to the natural language processing API which in turn processes the tweets using the natural language processing and gives a result If those tweets are positive, negative or neutral in nature. The map clusters tweet as to show where people are tweeting most from according to the sample tweets we get from the streaming API. These clusters will be shown in different colors according to the sentimental evaluation we receive from the sentiment API by Vivek Narayanan which works by examining individual words and short sequences of words (n-grams) and comparing them with a probability model. The probability model is built on a pre labeled test set of IMDb movie reviews. It can also detect negations in phrases, i.e., the phrase "not bad" will be classified as positive despite having two individual words with a negative sentiment. The web service uses a co routine server based on event, so that the trained database can be loaded into shared memory for all requests, which makes it quite scalable and fast. The API is specified here, it supports batch calls so that network latency isn't the main bottleneck. For Instance, if a tweet is negative in evaluation then it is shown in a red color marker on the map, green for positive and grey for the neutral. This analytic will also demonstrate the heat map for all the tweets that are stored in the database which gives a satisfying answer demonstrating from which part of the world are most of the tweets from. In this project we create a dynamic web application with the target runtime environment as Apache Tomcat Server. The server will also be initialized with the context listener which starts running the code to get the tweets into the database till the server is stopped. The most popular trends among worldwide and citywide would be provided in a drop down to be selected from which gives a clear perspective on how each trend behaves. It also offers the public, the media, politicians and scholars a new and timely perspective on the dynamics of the world wide trends and public opinion.
    Collections
    SUNY Polytechnic Institute College of Engineering

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.