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Abstract

BACKGROUND—Differences in fast beta (20–28 Hz) electroencephalogram (EEG) oscillatory 

activity distinguish some individuals with psychiatric and substance use disorders, suggesting that 

it may be a useful endophenotype for studying the genetics of disorders characterized by neural 

hyper-excitability. Despite the high heritability estimates provided by twin and family studies, 

there have been relatively few genetic studies of beta EEG, and to date only one genetic 

association finding has replicated (i.e., GABRA2).
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METHOD—In a sample of 1,564 individuals from 117 families of European Ancestry (EA) 

drawn from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a 

Genome-Wide Association Study (GWAS) on resting-state fronto-central fast beta EEG power, 

adjusting regression models for family relatedness, age, sex, and ancestry. To further characterize 

genetic findings, we examined the functional and behavioral significance of GWAS findings.

RESULTS—Three intronic variants located within DSE (dermatan sulfate epimerase) on 6q22 

were associated with fast beta EEG at a genome wide significant level (p<5×10−8). The most 

significant SNP was rs2252790 (p<2.6×10−8; MAF= 0.36; β= 0.135). rs2252790 is an eQTL for 

ROS1 expressed most robustly in the temporal cortex (p= 1.2×10−6) and for DSE/TSPYL4 
expressed most robustly in the hippocampus (p=7.3×10−4; β= 0.29). Previous studies have 

indicated that DSE is involved in a network of genes integral to membrane organization; gene-

based tests indicated that several variants within this network (i.e., DSE, ZEB2, RND3, MCTP1, 
and CTBP2) were also associated with beta EEG (empirical p<0.05), and of these genes, ZEB2 
and CTBP2 were associated with DSM-V Alcohol Use Disorder (AUD; empirical p<0.05).

DISCUSSION—In this sample of EA families enriched for AUDs, fast beta EEG is associated 

with variants within DSE on 6q22; the most significant SNP influences the mRNA expression of 

DSE and ROS1 in hippocampus and temporal cortex, brain regions important for beta EEG 

activity. Gene-based tests suggest evidence of association with related genes, ZEB2, RND3, 
MCTP1, CTBP2, and beta EEG. Converging data from GWAS, gene expression, and gene-

networks presented in this study provide support for the role of genetic variants within DSE and 

related genes in neural hyperexcitability, and has highlighted two potential candidate genes for 

AUD and/or related neurological conditions: ZEB2 and CTBP2. However, results must be 

replicated in large, independent samples.
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Introduction

The resting-state human electroencephalography (EEG) represents the ongoing oscillations 

of spontaneous and continuous brain electrical activity, typically recorded while the 

participant is in a relaxed state (Niedermeyer, 1999). EEG is traditionally decomposed into 

the following frequency bands: delta (0–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–28 

Hz), and gamma (>29 Hz), with each band reflecting different topography and brain activity 

(Niedermeyer, 1999). For example, alpha rhythm reflects a relaxed state and has a posterior 

occipital topography, while beta rhythm reflects an active brain state and is present all over 

the scalp but predominantly at fronto-central loci (Rangaswamy and Porjesz, 2014). 

Dynamic coordination of lower frequencies (theta or alpha rhythms from subcortical region) 

and higher frequencies (beta or gamma rhythms from cortical sites) through a mechanism of 

phase-amplitude coupling modulates thalamo-cortical and cortico-cortical activity (Canolty 

and Knight, 2010; Malekmohammadi et al., 2015). Further, coherence at the beta frequency 

may serve to establish transient physiological connections among neurons in the 

hippocampus and related brain structures (Leung, 1992a; Vecchio et al., 2016a). While local 

excitatory-inhibitory interactions underlying sensory, motor and perceptual functions involve 
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local gamma-band oscillations, more integrative cognitive functions mediated by long-range 

cortical interactions often involve the beta range (Donner and Siegel, 2011). Resting-state 

brain activity in the beta range (herein referred to as beta EEG) is associated with several 

behavioral traits, including alcohol use disorders (Bauer, 2001; Begleiter and Porjesz, 1999; 

Choi et al., 2013; Gilmore et al., 2010a; Lee et al., 2014; Rangaswamy et al., 2002). Given 

these associations, and the high degree of genetic influence observed (Malone et al., 2014; 

van Beijsterveldt et al., 1996), beta EEG has been proposed as a useful endo-phenotype 

(Gottesman and Gould, 2003) for identifying genetic risk factors for disorders characterized 

by disinhibitory traits (Edenberg et al., 2004; Porjesz et al., 2002). Despite the promise of 

the endo-phenotype concept however, the genetic complexity of resting-state EEG (Malone 

et al., 2014), coupled with the scant number of replicable and/or clinically useful genetic 

variants uncovered by this approach (Iacono et al., 2016), has necessitated large scale 

genetic association studies of beta EEG, utilizing best-practices in genetic epidemiology.

Previous studies report differences in the magnitude of beta EEG among individuals with 

alcohol use disorders (AUD) and related problems (Bauer, 2001; Begleiter and Porjesz, 

1999; Gilmore et al., 2010b; Propping et al., 1981; Rangaswamy et al., 2002; Winterer et al., 

1998), gambling addiction (Choi et al., 2013), and Attention Deficit Hyperactive Disorder 

(ADHD; (Lee et al., 2014)). Researchers have consistently reported that individuals affected 

with DSM (III-R and IV) Alcohol Dependence (AD) show higher beta EEG (Bauer, 2001; 

Propping et al., 1981; Rangaswamy et al., 2002; Winterer et al., 1998). Further 

decomposition of the beta frequency band demonstrates that increased fast beta power (>19 

Hz) is of key importance in the association of beta EEG and AUD. For example, multiple 

studies have reported that fast beta EEG is superior to severity of illness, depression level, 

and childhood conduct problems in predicting relapse in abstinent individuals with AUD 

(Bauer, 2001; Saletu-Zyhlarz et al.). Since elevated beta EEG is present in the offspring of 

alcoholics prior to the onset of risky drinking (Begleiter and Porjesz, 1999; Deckel et al., 

1996; Rangaswamy et al., 2002), it has been suggested that excess beta power precedes the 

development of AUDs and is likely related to an underlying genetic predisposition for 

developing AUD, rather than a consequence of heavy alcohol use. Begleiter and colleagues 

have suggested that this may be an electrophysiological index of an imbalance in the 

excitation–inhibition homeostasis in the cortex, which underlies a predisposition to develop 

AUD and related disorders (Begleiter and Porjesz, 1999; Porjesz et al., 2005). Further 

supporting this hypothesis is the association of beta EEG and other disorders characterized 

by behavioral disinhibition such as behavior problems and hyperactivity in children (Deckel 

et al., 1996), externalizing psychopathology (e.g., substance abuse symptoms) in a 

community sample of adolescents (Gilmore et al., 2010b), ADHD (Choi et al., 2013), and 

internet addiction with comorbid depression (Lee et al., 2014). Although the precise role of 

increased beta EEG in these behaviors and disorders remains unclear, this literature suggests 

that there is variation in fast beta EEG among individuals with AUD and related 

psychopathology.

Resting state EEG is highly heritable (Malone et al., 2014; van Beijsterveldt et al., 1996), 

with studies reporting heritability (h2) estimates of monopolar resting state EEG power 

ranging from 0.49 to 0.85 (Malone et al., 2014; Smit et al., 2005; van Beijsterveldt et al., 

1996). Bipolar EEG derivations offer an improvement over monopolar EEG derivations in 
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the spatial resolution of the electrical sources, and reduce volume conduction effects (Ingber 

and Nunez, 1995; Nunez et al., 1997). In addition, the stability of EEG signals is excellent 

and under standardized conditions, there are high test-retest correlations. Studies that have 

examined the heritability of bipolar eyes-closed resting EEG power have shown comparable 

estimates to monopolar derivations (Tang et al., 2007b) and indicate that bipolar derivations 

are in greater accord with genetic findings in brain anatomy (Tang et al., 2007a). Despite the 

high heritability estimates provided by twin and family studies, there have been relatively 

few large (i.e., adequately powered) genetic studies of beta EEG (Iacono et al., 2016), and to 

date only one finding has replicated. An early analysis found linkage between beta EEG and 

a region of chromosome 4 (Porjesz et al., 2002) harboring variants in the gene that encodes 

the GABA α2 receptor subunit (GABRA2), which were subsequently associated with both 

beta EEG and AD (Edenberg et al., 2004). More recently, a study of 586 individuals of 

European ancestry (EA) with DSM-IV AD, and 603 ancestrally matched individuals without 

AD, replicated the association between beta activity and several GABRA2 variants (Lydall 

et al., 2011). To date, only two genome-wide association studies (GWAS) of beta EEG have 

been conducted (Hodgkinson et al., 2010; Malone et al., 2014). In a study of 322 Native-

American individuals, there were no genome-wide significant associations reported for beta 

EEG (Hodgkinson et al., 2010). We note that there were genome-wide significant findings 

for other EEG parameters; an association was observed among theta power (and AD) and 

several variants in SGIP1 (Hodgkinson et al., 2010). A recent GWAS of several EEG 

measures (including monopolar beta EEG, assessed at the central electrode) in 4,026 

adolescent twins and their parents (Malone et al., 2014) did not report any genome-wide 

significant variants, but replicated the previous associations observed between beta EEG and 

GABRA2 and expanded our understanding of the genetic epidemiology of other EEG 

parameters (i.e., resting-state theta EEG).

Given that beta EEG is highly heritable and has been found to be related to several 

externalizing traits including AUD (Bauer, 2001; Begleiter and Porjesz, 1999; Choi et al., 

2013; Gilmore et al., 2010b; Lee et al., 2014; Rangaswamy et al., 2002), genetic analysis of 

beta EEG may aid in our understanding basic brain functioning, and potentially differences 

and similarities among individuals with a range of behavioral and psychiatric disorders. As 

the elevation of beta power reported in individuals with AUD has a largely anterior 

topography, particularly in the higher frequency fast beta band (20–28 Hz; (Rangaswamy et 

al., 2002)), the primary aim of this study was to conduct a GWAS of fast beta (20–28 Hz) 

EEG power (bipolar derivation at fronto-central loci) in families from the Collaborative 

Study on the Genetics of Alcoholism (COGA); many of these families were densely affected 

with AD. In an effort to move beyond genotype-phenotype association and further 

characterize genetic association findings, the secondary aims of this study were to examine 

the functional and behavioral significance of GWAS findings. To this end, we explore the 

functional significance of GWAS variants using publically available gene expression data. In 

addition, we explore biological networks using publically available prediction programs.
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SAMPLE & METHODS

Sample

COGA recruited DSM-III-R and DSM-IV AD probands from inpatient and outpatient 

treatment facilities through six participating sites: State University of New York Downstate 

Medical Center, University of Connecticut Health Science Center, Indiana University School 

of Medicine, University of Iowa College of Medicine, University of California School of 

Medicine, and Washington University School of Medicine. Recruitment and assessment 

procedures, including a clinical interview, neurophysiological assessments and DNA 

collection have been described previously (Begleiter et al., 1995; Foroud et al., 2000). 

Probands and family members were administered the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA), a poly-diagnostic interview (Bucholz et al. 1994; 

Hesselbrock et al. 1999). Individuals below the age of 18 were administered an adolescent 

version of the SSAGA. The laboratory and data-collection procedures were identical at each 

of the sites (Begleiter et al., 1998). Institutional review boards at all sites approved the study.

All COGA DNA samples were genotyped for a 96 SNP (single nucleotide polymorphism) 

array (Fluidigm SNPtrace, Rutgers University Cell and DNA Repository) that included 64 

ancestry informative markers. The principal components derived from these SNPs were used 

to assign ancestry, and were the basis for the selection of the European Ancestry (EA) 

families. Prioritization of families was based on the most informative families, defined as 

those with the largest number of alcohol dependent family members with DNA and 

electrophysiological measurements. The analytic sample consisted of all family members 

with both resting state EEG and GWAS data available: 1,564 individuals (824 females and 

740 males; average age: 31.6) from 117 multi-generational families affected with AD. 

Family sizes ranged from 4 to 39 individuals with an average of 13.4 individuals (with EEG 

data) per family.

EEG Recording & Processing

Prior to neurophysiological assessments, participants were required to have abstained from 

alcohol for a minimum of 3 weeks. Individual were excluded from neurophysiological 

assessment if they had any of the following: (1) recent substance or alcohol use (i.e., positive 

breath-analyzer test); (2) hepatic encephalopathy/cirrhosis of the liver; (3) significant history 

of head injury, seizures or neurosurgery; (4) uncorrected sensory deficits; (5) taking 

medication known to influence brain functioning; and (6) other acute/chronic medical 

illnesses that affect brain function.

Participants were seated comfortably in a dimly lit sound-attenuated temperature-regulated 

booth (Industrial Acoustics, Bronx, NY). They were instructed to keep their eyes closed and 

remain relaxed, but to not fall asleep. EEG data were collected in the awake, eyes-closed 

condition for 4.25 minutes. Each participant wore a fitted electrode cap (Electro-Cap 

International, Eaton, OH) using the 19-channel montage as specified according to the 10–20 

international system (Supplementary Figure 1). The nose was used as a reference, and a 

forehead electrode served as the ground electrode. Both vertical and horizontal eye 

movements were monitored with electrodes that were placed supraorbitally and at the outer 
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canthus of the left eye to perform ocular artifact correction. Electrode impedances were 

maintained below 5 kΩ. Electrical activity was amplified 100,000 times by Sensorium 

(Charlotte, VT) EPA-2 electrophysiology amplifiers with either a bandpass between 0.02 

and 50 Hz and digitized on a Concurrent (Atlanta, GA) 5550 computer at a sampling rate of 

256 Hz or a band pass between 0.02 Hz and 100.0 Hz on a Neuroscan system (Version 4.1 to 

4.5) (Neurosoft, Inc., El Paso, TX) at sampling rates of 500 Hz or 512 Hz. All six collection 

sites used identical experimental procedures and EEG acquisition hardware and software 

programs.

A continuous interval comprising 256 seconds of eyes-closed resting EEG data was 

analyzed. The raw data were subjected to wavelet filtering and reconstruction to eliminate 

very high and low frequencies (Bruce & Gao, 1994; Strang & Nguyen, 1996). The s12 

wavelet was used to perform a six-level analysis, and the output signal was reconstructed 

with levels d6–d3, roughly equivalent to applying a bandpass filter with a range of 2–64 Hz 

to the data. Subsequently, eye movements were removed by using the method developed by 

Gasser et al. (Gasser and Laemmli, 1987; Gasser et al., 1986). The filtered artifact-free data 

were transformed into bipolar derivations. Bipolar derivations were used in preference to 

monopolar derivations to improve the spatial resolution of the electrical sources (Ingber and 

Nunez, 1995; Nunez et al., 1997). Bipolar derivations were analyzed in 254 overlapping 2-

second epochs by use of a Fourier transform. After windowing effects were minimized by 

application of a Hamming function (Hamming, 1983), the resulting spectral densities, 

sampled at 0.5 Hz intervals, were aggregated into bands, divided by the bandwidth, and then 

averaged across epochs. As the elevation of beta power reported in individuals with alcohol 

use problems has a largely anterior topography, particularly in the higher frequency fast beta 

band (20–28 Hz; (Rangaswamy et al., 2002)), the current study examines fast beta EEG (20–

28 Hz) at fronto-central pairs: Fz-Cz, F3-C3, and F4-C4. Given the high degree of 

correlation observed among these phenotypes, GWAS results are presented for F3-C3, for 

which the most robust effects were observed.

Genotyping, Imputation and Quality Review

Genotyping of 1,564 individuals from 117 EA families was performed at the Center for 

Inherited Disease Research (CIDR) using the Illumina 2.5M array (Illlumina, San Diego, 

CA, USA). COGA’s quality control (QC) approach has been previously reported (Wetherill 

et al., 2015). Briefly, individuals with a genotype rate <98% were excluded from analysis, 

and SNPs with a genotyping rate <98% were excluded from analysis. The 795 genotyped 

founders were used to remove SNPs which violated Hardy-Weinberg equilibrium (HWE; 

p<10−6). SNPs with minor allele frequency (MAF) less than 3% in the founders were also 

removed from further analysis. The reported pedigree structure was assessed using a pruned 

set of 1,519,440 SNPs. Pairwise identity by descent estimates were computed in PLINK 

(http://pngu.mgh.harvard.edu/purcell/plink/) to detect pairs of individuals whose allele 

sharing was not consistent with the reported family relationship. Family structures were 

altered as needed, and then SNP genotypes were tested for Mendelian inconsistencies 

(Pedcheck; O’Connell & Weeks, 1998) with the revised family structure. The cleaned 

genotype data were imputed to 1000 genomes (EUR and AFR, Phase 3, b37, October 2014) 

with build hg19 using SHAPEIT (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/
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shapeit.html) and IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html). To 

avoid ambiguities in strand designation, SNPs with A/T or C/G alleles were removed. After 

imputation, genotype probabilities ≥ 0.90 were changed to genotypes. Mendelian errors in 

the imputed SNPs were reviewed and resolved as described in Wetherill et al., 2015 

(Wetherill et al., 2015). All SNPs with imputation genotyping rate < 98% and MAF < 0.03 

were excluded from association analyses.

Association Analysis

Primary analyses were conducted in GWAF (Genome-Wide Association analyses with 

Family) on 12,972,748 SNPs, of which 1,519,440 were genotyped directly, using a 

generalized estimating equation (GEE) framework to control for the relatedness in the 

family sample (Chen and Yang, 2010). Sex and log-transformed age (at the time of EEG 

recording) were included as covariates in the model, as each of these variables were 

associated with fast beta EEG (p<0.0001). The first three principal components (PC1-PC3) 

computed from SNPRelate (Zheng et al, 2012) were also included as covariates to reduce 

the risk of false-positive associations owing to population stratification. Established 

thresholds for genome-wide significance (p<5×10−8) were utilized. In an effort to assess the 

influence of alcohol use problems on the genetic associations observed for beta EEG, given 

the association of AUD and beta EEG in this and previous studies, we conducted a 

secondary analysis in which we repeated the initial GWAS as described above, with the 

addition of DSM-V AUD severity as a covariate.

Functional Analyses

We utilized publicly available data from the UK Brain Expression Consortium 

(BRAINEAC; http://www.braineac.org/) to examine whether the most significant GWAS 

variant for fast beta EEG was an expression quantitative trait locus (eQTL) for any known 

gene. BRAINEAC draws on data from 134 neuropathologically normal individuals of EA 

and assesses 10 different regions of the brain, including: cerebellar cortex, frontal cortex, 

hippocampus, medulla (inferior olivary nucleus), occipital cortex (primary visual cortex), 

putamen, substantia nigra, thalamus, temporal cortex, and intralobular white matter 

(Trabzuni et al., 2011). All p-values presented are Bonferonni corrected for multiple-testing, 

based on the ten brain regions examined. Due to the large number of brain regions 

examined, only the SNPs genome-wide associated with fast beta EEG were examined in 

BRAINEAC to minimize multiple-testing. All associations that withstood multiple testing 

were examined in the Genotype-Tissue Expression Project (GTex) database 

(www.gtexportal.org) to confirm eQTL findings (For brain eQTLs, sample sizes ranged from 

70–127). GeneMANIA Cytoscape 3.0.0 plugin (Mostafavi et al., 2008), a multiple 

association network integration algorithm for predicting gene function, was employed to 

identify genes in related gene networks; physical, co-expression, co-localization and 

pathway gene-gene interactions were evaluated. Once a gene network was identified (via 

GeneMANIA as described above), DAVID (Database for Annotation, Visualization, and 

Integrated Discovery; (Dennis et al., 2003) bioinformatics resource was used to assess gene 

functions common to this network. Functional Categories and Gene Ontologies were 

evaluated based on enrichment scores (Fisher Exact Probability Value or “EASE Score”) and 
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tests of statistical significance, including p-values adjusted for multiple testing (Bonferonni 

correction).

Post-Hoc Analyses

Following the identification of gene networks of relevance to GWAS findings (as described 

above via GeneMANIA), gene-based tests of association with fast beta EEG were conducted 

in PLINK (Purcell et al., 2007), using set-based analyses (“--set-test”). Gene-based tests 

included all available SNPs in a given gene, corrected for the number of independent signals 

(i.e., linkage disequilibrium blocks) within that gene set. In addition, association models 

were adjusted for the relatedness in the family sample, sex, log-transformed age, and 

ancestry. Tests of association were accepted as significant if the 100,000 permutations of the 

set-based regression analysis (Bonferroni corrected for the number of independent signals 

within the set) produced an empirical p-value <0.05. Subsequently, these procedures were 

repeated for tests of gene-based association with DSM-V AUD severity only among genes 

that were associated with beta EEG. In addition, GABRA2 variants previously shown to be 

associated with aspects of beta EEG (Edenberg et al., 2004; Lydall et al., 2011; Malone et 

al., 2014) were tested for association with fast beta EEG (20–28 Hz) at fronto-central pairs: 

Fz-Cz, F3-C3, and F4-C4.

Results

Association Analysis

Three highly correlated (i.e., in high linkage disequilibrium; r2 =1.0; D-prime=1.0 based on 

hg19 1000 Genomes from the CEU sample) intronic SNPs (rs10456907, rs13214667, 

rs2252790) located within DSE (dermatan sulfate epimerase) on 6q22 were associated with 

fast beta EEG at a genome wide significant level (p<5×10−8). All variants associated with 

beta EEG at p <5×10−7 are detailed in Table 1 and depicted in Figures 1 and 2. Conditional 

analyses, and the high degree of linkage disequilibrium observed among the most significant 

SNPs (Figure 2), suggest that a single genome-wide signal is implicated. The most 

significant SNP was rs2252790 (p<2.6×10−8; MAF: 0.36; β: 0.135; Table 1). GWAS results 

adjusted for DSM-V AUD severity (i.e., GWAS model included DSM-V AUD severity as a 

covariate) yielded similar results as the primary analyses: intronic DSE variant rs2252790 

remained the most significantly associated SNP. However, p-values were slightly less robust 

(Supplemental Table 1) with only one of three DSE variants remaining genome-wide 

significant (rs2252790). Three additional sub-threshold (5×10−7>p>5×10−8; Table 1) signals 

were also detected, including a signal on the long arm of Chromosome 3 (3q11.2; UROC1, 

FRMD4B; Supplemental Figure 2), an intergenic signal on the long arm of Chromosome 12 

(12q14; Supplemental Figure 3), and an intergenic signal on the long arm of Chromosome 

21 (21q21; Supplemental Figure 4).

Functional Analyses

Braineac indicates that rs2252790 is nominally associated with the mRNA expression of 

DSE/TSPYL1 (TSPY like 4), and ROS1 (ROS proto-oncogene 1, receptor tyrosine kinase) 

in several brain regions. Two of these findings survived a Bonferroni multiple test correction 

(p<5×10−3): rs2252790 is an eQTL for DSE/TSPYL1 expression in hippocampus tissue 
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(p=1.26×10−4) and for ROS1 expression in temporal cortex tissue (p=1.20×10−6). In the 

GTEx database, rs2252790 is associated with the expression of DSE/TSPYL1, ROS1, 

NT5DC1, and FRK, with the most robust effects observed for DSE expression 

(p=8.0×10−20). GeneMANIA indicated that DSE is involved in the following network of 

genes: DSEL, ACSL4, CPSF3L, HFE, ZEB2, PXN, AHR, MCTP1, TGFBI, FCGR1A, 
TNS3, TRPM2, SLC27A3, EMR2, TAX1BP3, MRC2, F11R, RND3, MARCKS, CTBP2. 

These genes are detailed in Table 2 and Figure 3. DAVID indicated that 11/21 of these genes 

were integral to membrane organization (enrichment score: 1.33, p-value=0.03); however, 

this enrichment score did not survive a Bonferonni correction (p-value= 0.09).

Post-Hoc Analyses

Following the identification of gene networks of relevance to GWAS findings (i.e., genes 

shown to interact with DSE via physical, co-expression, co-localization and/or pathway 

analyses in previous studies, curated using GeneMANIA as described above), gene-based 

analyses indicated that when considered as a set (all available SNPs in a given gene, 

corrected for the number of independent signals within that gene set), variants within the 

following genes are associated with fast beta EEG (empirical p-value<0.05): DSE, ZEB2, 
MCTP1, RND3 and CTBP2 (Table 3). In addition, gene-based analyses indicated that ZEB2 
and CTBP2 were also associated with DSM-V AUD (empirical p-value<0.05; Table 3). 

Table 3 details the number of variants examined in each gene-set, the number of variants 

nominally associated with beta EEG and/or AUD (p<0.05), the number of independent 

signals represented among each of the SNPs tested, and the empirical p-value based on 

100,000 permutations. In addition, 20/26 GABRA2 variants previously shown to be 

associated with aspects of beta EEG were modestly (p<0.05) associated with fast beta EEG 

at specific fronto-central pairs (Table 4). Of these 20 variants, 5 survive a multiple-test 

correction (0.05/3 LD Blocks: p<0.017).

Discussion

Although previous studies have reported variation in beta EEG among individuals diagnosed 

with AD and related conditions, there have been relatively few studies examining genetic 

variants in relation to beta EEG and only one finding that has been replicated to date 

(GABRA2 (Porjesz et al. 2002b; Edenberg et al. 2004; Lydall et al. 2011; Ittiwut et al. 2012; 

Malone et al. 2014)). Subsequently, associations between GABRA2, AD (Edenberg et al. 
2004; Lappalainen et al. 2005; Covault et al, 2004; Drgon et al., 2006; Fehr et al., 2006; 

Soyka et al. 2008; Enoch et al. 2006, 2010; Roh et al. 2011), drug dependence (Agrawal et 
al. 2006; Enoch et al. 2010; Ehlers & Gizer 2013), and externalizing behavior (Dick et al., 

2013; Salvatore et al., 2015; Trucco et al., 2016; Wang et al., 2016) have been observed, 

indicating the potential of genetic studies of beta EEG to facilitate discovery of genes 

underlying disinhibitory behavior. However, the number of replicable genetic variants 

uncovered by this approach has been limited (Iacono et al., 2016), necessitating large scale 

genetic association studies of beta EEG utilizing the best-practices of genetic epidemiology.

In a GWAS of fronto-central fast beta EEG in families of EA, we report a genome-wide 

significant signal in an intronic region of DSE (dermatin sulfate) on 6q22. The most 
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significant SNP, rs2252790 (p<2.6×10−8; MAF: 0.36), was positively associated with fast 

beta EEG (β: 0.135). Taken together, data from Brainiac and GTEx suggest that rs2252790 

is associated with the expression of DSE/TSPYL1 (note, that DSE and TSPYL1 have 

overlapping regions) and ROS1 in several brain tissues. Notably, rs2252790 is an eQTL for 

DSE/TSPYL1 mRNA expression in hippocampus tissue and for ROS1 expression in 

temporal cortex tissue. Both of these brain regions may be particularly relevant to beta EEG. 

It has been suggested that the beta rhythm may serve to establish transient physiological 

connections, reflected in coherence at the beta frequency among neurons in the hippocampus 

and related structures (Leung, 1992b; Vecchio et al., 2016b). Further, the high-frequency 

(i.e., fast beta) oscillations, often referred to as ‘rapid discharges’, have often been 

associated with seizure generation. Evidence from hippocampal slices shows that 

neuroelectric bursts in CA1 pyramidal cells are caused by highly synchronized β-band 

activity (Netoff and Schiff, 2002). Further, impairments observed in temporal lobe epilepsy 

(TLE) and Alzheimer’s disease have links to these brain structures and fast beta EEG. For 

example, lesions due to TLE typically involve mesial structures of the temporal lobe, 

particularly the amygdala and hippocampus (Kiernan, 2012). These structures play a central 

role in learning and memory (Leritz et al., 2006), while additionally involving sub-domains 

of working memory and executive functions (Stretton and Thompson, 2012; Zhao et al., 

2014). Seizures caused by mesial TLE often involve fast frequency oscillations in the range 

of EEG fast-beta (Spencer et al., 1992; Bartolomei et al., 2004; Bartolomei et al., 2008). 

Further, researchers have hypothesized that cognitive impairments observed in Alzheimer’s 

disease may involve disrupted functional connectivity between frontotemporal and 

frontoparietal regions related to beta (and alpha) frequency EEG (Hsiao et al., 2013). These 

findings highlight that the brain regions implicated by the mRNA expression associated with 

DSE variant rs2252790 (hippocampus, temporal cortex) are related to beta band activity as 

well as higher cognitive functions, increasing the biological plausibility of this study’s 

findings. However, further studies are needed to understand the relationship of the DSE 
variant rs2252790, mRNA expression in hippocampus and temporal cortex, and beta EEG.

Variation within DSE has been associated with several cancers (Gouignard et al., 2016a; 

Thelin et al., 2013, 2012), Heschl’s Gyrus thickness (Cai et al., 2014), and is also a notable 

risk factor for Ehlers-Danlos syndrome, with a subtype specifically linked to dysfunction of 

DSE (Müller et al., 2013). Recent work by Gouignard et al. (Gouignard et al., 2016b) 

demonstrates a functional role for dse (the protein encoded by DSE) in cranial neural crest 

cell migration and in cell adhesion providing a potential biological mechanism linking DSE 
dysfunction to Ehlers-Danlos syndrome and other neural crest related disorders (i.e., 

neurocristopathies); the knockdown of dse impaired the correct activation of transcription 

factors involved in the epithelial-mesenchymal transition and reduced the extent of neural 

crest cell migration, subsequently leading to a decrease in neural crest-derived craniofacial 

skeleton, melanocytes and dorsal fin structures.

Given the association observed between AUDs and beta EEG in this and previous studies 

(Rangaswamy et al., 2004), we conducted a secondary analysis in which we repeated the 

initial GWAS of beta EEG, adjusting for DSM-V AUD severity. Results produced similar 

findings as the primary analyses; however, all p-values were slightly less significant. This 

suggests that the association of rs2252790 and beta EEG is not explained entirely by AUD; 
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however, there may be an interaction among DSE variants, DSM-V AUD severity, and beta 

EEG. To comment on this more conclusively, future studies employing longitudinal data 

should assess the interaction of DSM-V AUD symptoms, DSE variants, and beta EEG.

Based on previous physical, co-expression, co-localization and pathway gene-gene 

interactions observed in the literature, GeneMANIA indicated that DSE is involved in a 

network of genes integral to membrane organization (Table 2). Given that scalp electrodes 

record potential differences that are caused by postsynaptic potentials in the cell membrane 

of cortical neurons, the relation between genes critical in cellular membrane organization 

and EEG seems broadly plausible. Several genes in this network have been previously linked 

to phenotypes of relevance to beta EEG and related traits (i.e., cognitive performance, 

bipolar disorder, AUD). For example, variants within DSEL (Dermatin Sulfate epimerase-

like) have been associated with cognitive performance (Need et al., 2009), depression (Shi et 

al., 2011), and bipolar disorder (Goosens et al., 2003). Each of these phenotypes have been 

linked to variation in beta rhythms (cognitive performance (Klimesch, 1999); depression 

(Zotev et al., 2014); bipolar disorder (Andersson et al., 2008). In the present study, we find 

evidence of association among many variants within this DSE gene network and beta EEG, 

with the most robust associations (empirical p<0.05) observed for ZEB2, MCTP1, RND3, 

and CTBP2. Of these genes, ZEB2 and CTBP2 were also associated (empirical p-

value>0.05) with DSM-V AUD (Table 3). Both ZEB2 and CTBP2 have been shown to 

influence gene expression in the brain, particularly during brain development, and have been 

previously correlated with traits of relevance to beta EEG and/or AUD.

CTBP2 is from a family of COOH-terminal binding proteins (CtBPs), which are widely 

expressed during several developmental processes, and have been linked to various complex 

traits, including cancers and Alzheimer’s disease (Liu et al., 2014; Zhang et al., 2014; Zheng 

et al., 2015). Importantly, two previous studies have found associations among CTBP2 and 

alcohol related phenotypes. A linkage analysis of alcohol and cigarette consumption 

(maximum cigarettes/grams of alcohol consumed per day) conducted in 1,390 individuals 

from 41 extended Mexican American families indicated a linkage peak on Chromosome 10. 

Subsequently, an expression profile analyses of 342 RNA transcripts under the linkage peak 

pointed to two genes, one of which was CTBP2. Further, CTBP2 was shown to influence 

RNA levels, which was negatively correlated with smoking and/or drinking (Viel et al., 

2008). In addition, an early GWAS of alcohol and nicotine dependence reported an 

association of CTBP2 and DSM-IV Alcohol Dependence in an Australian cohort of 1,224 

cases and 1,162 controls, although the association did not meet genome-wide significant 

criteria (p-value: 3.91×10−7;(Lind et al., 2010)). Further support for the role of CTBP2 in 

alcohol related behavior comes from model organism work (Grotewiel and Bettinger, 2015); 

a genetic screen in nematode Caenorhabditis elegans identifies ctbp-1 (the ortholog of 

CTBP2) as a key regulator required for the development of acute functional tolerance to 

ethanol (Bettinger et al., 2012; Reid et al., 2015). While this previous literature lends 

corroborating support for the association of CTBP2 and AUD reported here, this finding 

should clearly be replicated in independent, larger samples.

ZEB2 (zinc finger E-box binding homeobox 2) encodes the Smad Interacting Protein 1, 

which is involved in the TGF-β/BMP/Smad signaling cascade (Babkina et al., 2016). ZEB2 
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mRNA is expressed during early embryogenesis in brain tissue, and is thought to play an 

important role in neural crest cell migration (Van de Putte et al., 2003) and in the regulation 

of corticogenesis (Seuntjens et al. 2009). Mutations in ZEB2 have been linked with epilepsy 

(EPICURE Consortium et al., 2012) and related disorders, such as Hirschsprung disease/

Mowat-Wilson syndrome (MWS; (Cordelli et al., 2013)). MWS is caused by heterozygous 

mutations or deletions of ZEB2 and is characterized by epilepsy, moderate to severe 

intellectual disability, corpus callosum abnormalities and other congenital malformations. 

Recent studies (Cordelli et al., 2013) suggest that a distinct “electroclinical” phenotype, 

characterized by age-dependent EEG changes, can be recognized in most patients with 

MWS. While the mechanism underlying epilepsy in individuals with ZEB2 mutations is not 

well understood, studies by McKinsey and Van den Berghe (McKinsey et al., 2013; van den 

Berghe et al., 2013) show the influence of ZEB2 on the neurogenesis of cortical γ-

aminobutyric acid (GABA)ergic interneurons. Further, lack of ZEB2 prevents the repression 

of NKX2-1 homeobox transcription factor, the expression of which induces the 

differentiation of progenitor cells into striatal interneurons rather than cortical neurons 

(McKinsey et al., 2013; van den Berghe et al., 2013). Subsequently, deficit of GABAergic 

inhibition is thought to result in seizures (Yalçın, 2012). A recent exome sequencing study 

identified a de novo missense variant in ZEB2 and early infant epileptic encephalopathy 

characterized by burst-suppression EEG (Babkina et al., 2016). In addition, independent 

genetic studies have also found an association of ZEB2 variants, obesity related traits 

(Comuzzie et al., 2012), depression, bipolar disorder, and schizophrenia (Ripke et al., 2014). 

Taken together, this may suggest that variation in ZEB2 may have broader neurobiological 

implications, beyond epilepsy. While no previous genetic association studies have provided 

a clear association of either ZEB2 or CTBP2 and beta EEG, mRNA expression in key brain 

regions for beta EEG, along with associations with potentially related traits (i.e., AUD, 

alcohol and cigarette use frequency, epilepsy) could provide a potential link for the 

association of ZEB2, CTBP2 and beta EEG. These conclusions however, are beyond the 

scope of the present study and must be explored in future, independent studies.

Since the three genome-wide associated variants were located within an intron of DSE, this 

discussion has primarily focused on DSE and related gene networks. However, it should be 

noted that the pattern of association observed for beta EEG could implicate several nearby 

genes (see Figure 2); several variants in high linkage disequilbirum with rs2252790 are 

located within TSPYL4. For example, rs910391, which is in perfect linkage disequilbirum 

with rs2252790, is located in the promoter region of TSPYL4. Further, rs2252790 is 

nominally associated with the mRNA expression of several neighboring genes including 

TSPYL1, TSPYL4, ROS1, NT5DC1, and FRK, although the most robust effects were 

observed for DSE expression. Therefore, it is possible that associations observed in this 

study are due to the influence of these (or other) genes on beta EEG.

This study also confirmed that several variants within GABRA2 were modestly (p<0.05) 

associated with fast beta EEG in the fronto-central region (Table 4). The association of 

GABRA2 and beta EEG was initially reported with linkage and association analysis in 

COGA AD families using the first spatial/spectral component of 11 bipolar electrode pairs 

and 3 beta frequency bands ranging from 12.5–28 Hz (Porjesz et al., 2002; Edenberg et al., 

2004). Subsequently, an association between GABRA2 variants and bipolar beta (13.5–27 
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Hz) EEG, assessed at fronto-central electrodes, was also reported in a case-control study of 

AD (Lydall et al., 2011). More recently, Malone et al., (2014) reported an association of 

GABRA2 and monopolar beta EEG, assessed at the central electrode (i.e., CZ) using GWAS 

data on a community sample of adolescent twins and their parents (Malone et al., 2014). In 

the present study, we build upon this prior literature in providing additional support for the 

association of GABRA2 variants and bipolar fast beta (20–28 Hz) EEG, assessed at fronto-

central electrodes, in a family sample enriched for AD.

Limitations

Most notable is the relatively small sample size and related lack of statistical power to detect 

subtle genotypic effects. A recent article described the large projected sample sizes needed 

for a well powered genetic study of EEG, and highlighted the concerns that statistically 

underpowered genetic studies raise (Iacono et al., 2016). However, GWAS results seem 

reliable based on corroborating information (i.e., multiple genome-wide significant SNPs in 

high LD, biological plausibility). Nevertheless, genetic associations reported in this study 

must be replicated in a large, independent sample. Furthermore, given the nominal 

associations observed in eQTL analyses, these findings must also be replicated in larger 

samples. In addition, the current study includes participants with a wide age range (ages 7–

74), which introduces potential for unmeasured confounding effects due to age-related 

changes in beta EEG; GWAS analyses were adjusted for age and age2 in an effort to 

minimize age related differences in beta EEG genetic association findings. However, future 

studies should examine the effects of genetic variants on trajectories of beta EEG during 

development in order to delineate age-specific effects, and the links between these effects 

and/or the onset of psychopathology, such as AUD. Finally, the analytic software employed 

for this genome-wide analysis of family based samples (GWAF) does not currently allow for 

the analysis of sex chromosomes.

Conclusions

To date, there have been relatively few genetic studies examining beta EEG, and only one 

finding that has been replicated. This study reports association between intronic SNPs 

located within DSE on 6q22 and fronto-central fast beta EEG in a sample of related 

individuals of EA. The most significant SNP is an eQTL for DSE, a gene encoding a protein 

important in cranial neural crest development, previously implicated in several complex 

traits (e.g., Ehlers Danlos syndrome, bipolar disorder, brain morphology) and expressed in 

hippocampus and temporal cortex, brain regions of importance to beta EEG. Further, 

GeneMANIA has indicated that DSE interacts with a network of genes integral to membrane 

organization. In the present study, gene-based tests of association suggest that several 

variants within this network (i.e., variants within DSE, ZEB2, MCTP1, RND3, and CTBP2) 
were associated with beta EEG, and ZEB2 and CTBP2 were also associated with DSM-V 

AUD. Converging data from GWAS, gene expression, and gene-networks presented in this 

study provide support for the role of genetic variants within DSE and related genes in neural 

hyperexcitability, and has highlighted two genes potentially related to AUD. While results 

presented in this study are intriguing, findings clearly need additional support including 

replication in larger, independent studies.
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Highlights

• GWAS of resting state fast beta (20–28Hz) EEG (F3-C3) in COGA families 

of European Ancestry.

• Fast beta EEG is genome-wide associated with three variants within DSE 
(6q22).

• rs2252790 influences mRNA expression in brain tissue.

• Related genes ZEB2, RND3, MCTP1, and CTBP2 are associated with beta 

EEG
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Fig. 1. 
Manhattan plot of GWAS results for the fast beta EEG (20–28 Hz; bipolar derivation at the 

fronto-central electrode pair (F3-C3)).

Negative log-transformed p-values for SNPs are plotted against base-pair position for each 

chromosome. Three intronic DSE variants on chromosome 6 exceeded the genome-wide 

significance threshold of 5 × 10−8, indicated by the red line.

Meyers et al. Page 22

Int J Psychophysiol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Association results for fast beta EEG on Chromosome 6
Y-axis denotes the −log10(p-value) for association. X-axis is the physical position on the 

chromosome (Mb). The most significantly associated SNP (rs2252790) is shown in purple. 

The extent of linkage disequilibrium (as measured by r2) between each SNP and the most 

significantly associated SNP is indicated by the color scale at top left. Larger values of r2 

indicate greater linkage disequilibrium (LD). LD is based on hg19 1000 Genomes from the 

CEU sample.
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Figure 3. 
DSE related gene network identified via GeneMANIA, a multiple association network 

integration algorithm utiilizing physical, co-expression, and co-localization gene-gene 

interactions as well as genes with shared protein domains observed in previous studies.
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Table 2

DSE -related gene network identified via GeneMANIA, a multiple association network integration algorithm 

utilizing physical, co-expression, co-localization, and pathway gene-gene interactions observed in previous 

studies.

GENE SYMBOL CHROMOSOME LOCATION OFFICIAL GENE NAME

ACSL4 X acyl-CoA synthetase long-chain family member 4

CPSF3L 1 cleavage and polyadenylation specific factor 3-like

FCGR1A 1 Fc fragment of IgG receptor Ia

SLC27A3 1 solute carrier family 27 member 3

F11R 1 F11 receptor

ZEB2 2 zinc finger E-box binding homeobox 2

RND3 2 Rho family GTPase 3

MCTP1 5 multiple C2 and transmembrane domain containing 1

TGFBI 5 transforming growth factor beta induced

DSE 6 dermatan sulfate epimerase

HFE 6 hemochromatosis

MARCKS 6 myristoylated alanine rich protein kinase C substrate

AHR 7 aryl hydrocarbon receptor

TNS3 7 tensin 3

CTBP2 10 C-terminal binding protein 2

PXN 12 paxillin

TAX1BP3 17 Tax1 binding protein 3

MRC2 17 mannose receptor C type 2

DSEL 18 dermatan sulfate epimerase-like

ADGRE2 19 adhesion G protein-coupled receptor E2

TRPM2 21 transient receptor potential cation channel subfamily M member 2

Note: ACSL4 was not assessed in the current study

Int J Psychophysiol. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meyers et al. Page 28

Ta
b

le
 3

G
en

e-
ba

se
d 

as
so

ci
at

io
n 

of
 D

SE
-r

el
at

ed
 g

en
es

, f
as

t b
et

a 
E

E
G

, a
nd

 D
SM

-V
 A

U
D

G
E

N
E

 S
Y

M
B

O
L

# 
O

F
 S

N
P

S 
T

E
ST

E
D

# 
O

F
 S

IG
N

IF
IC

A
N

T
 S

N
P

S
# 

O
F

 I
N

D
E

P
E

N
D

E
N

T
 S

IG
N

A
L

S
E

M
P

IR
IC

A
L

 P
-V

A
L

U
E

B
et

a 
E

E
G

D
SM

-V
 A

U
D

B
et

a 
E

E
G

D
SM

-V
 A

U
D

D
SE

60
2

16
3

89
5

<0
.0

00
0.

09
5

C
T

B
P

2
78

0
53

64
5

0.
01

9
0.

04
4

Z
E

B
2

21
8

23
43

5
0.

03
2

0.
02

2

M
C

T
P

1
16

51
14

0
11

0
5

0.
04

4
0.

06
8

R
N

D
3

90
4

3
1

0.
04

6
0.

21
0

T
N

S3
93

6
52

N
ot

 te
st

ed
5

0.
06

5
N

ot
 te

st
ed

M
R

C
2

16
7

15
N

ot
 te

st
ed

5
0.

08
2

N
ot

 te
st

ed

F1
1R

18
0

16
N

ot
 te

st
ed

5
0.

12
5

N
ot

 te
st

ed

M
A

R
C

K
S

61
20

N
ot

 te
st

ed
5

0.
17

6
N

ot
 te

st
ed

C
PS

F3
L

10
3

10
N

ot
 te

st
ed

5
0.

20
4

N
ot

 te
st

ed

T
R

PM
2

27
0

7
N

ot
 te

st
ed

5
0.

26
7

N
ot

 te
st

ed

A
D

G
R

E
2

31
7

19
N

ot
 te

st
ed

5
0.

31
9

N
ot

 te
st

ed

T
G

FB
I

14
2

4
N

ot
 te

st
ed

4
0.

34
5

N
ot

 te
st

ed

D
SE

L
77

3
N

ot
 te

st
ed

5
0.

37
4

N
ot

 te
st

ed

PX
N

14
3

6
N

ot
 te

st
ed

5
0.

40
4

N
ot

 te
st

ed

H
FE

11
5

22
N

ot
 te

st
ed

5
0.

58
3

N
ot

 te
st

ed

SL
C

27
A

3
46

4
N

ot
 te

st
ed

3
0.

59
1

N
ot

 te
st

ed

A
H

R
11

7
11

N
ot

 te
st

ed
5

0.
60

8
N

ot
 te

st
ed

FC
G

R
1A

4
0

N
ot

 te
st

ed
0

1.
00

0
N

ot
 te

st
ed

TA
X

1B
P3

11
5

0
N

ot
 te

st
ed

1
1.

00
0

N
ot

 te
st

ed

N
ot

e:
 F

ol
lo

w
in

g 
th

e 
id

en
tif

ic
at

io
n 

of
 D

SE
 r

el
at

ed
 g

en
es

 id
en

tif
ie

d 
vi

a 
G

en
eM

A
N

IA
, g

en
e-

ba
se

d 
te

st
s 

of
 a

ss
oc

ia
tio

n 
w

ith
 f

as
t b

et
a 

E
E

G
 w

er
e 

co
nd

uc
te

d 
in

 P
L

IN
K

 (
Pu

rc
el

l e
t a

l.,
 2

00
3)

, u
si

ng
 s

et
-b

as
ed

 
an

al
ys

es
 (

“-
-s

et
-t

es
t”

).
 G

en
e-

ba
se

d 
te

st
s 

in
cl

ud
ed

 a
ll 

av
ai

la
bl

e 
SN

Ps
 in

 a
 g

iv
en

 g
en

e,
 c

or
re

ct
ed

 f
or

 th
e 

nu
m

be
r 

of
 in

de
pe

nd
en

t s
ig

na
ls

 (
i.e

., 
lin

ka
ge

 d
is

eq
ui

lib
ri

um
 b

lo
ck

s)
 w

ith
in

 th
at

 g
en

e 
se

t. 
In

 a
dd

iti
on

, a
ll 

as
so

ci
at

io
n 

m
od

el
s 

w
er

e 
ad

ju
st

ed
 f

or
 th

e 
re

la
te

dn
es

s 
in

 th
e 

fa
m

ily
 s

am
pl

e,
 s

ex
, l

og
-t

ra
ns

fo
rm

ed
 a

ge
, a

nd
 a

nc
es

tr
y.

 T
es

ts
 o

f 
as

so
ci

at
io

n 
w

er
e 

ac
ce

pt
ed

 a
s 

si
gn

if
ic

an
t i

f 
th

e 
10

0,
00

0 
pe

rm
ut

at
io

ns
 o

f 
th

e 
se

t-
ba

se
d 

re
gr

es
si

on
 a

na
ly

si
s 

pr
od

uc
ed

 a
n 

em
pi

ri
ca

l p
-v

al
ue

 <
0.

05
. S

ub
se

qu
en

tly
, t

he
se

 p
ro

ce
du

re
s 

w
er

e 
re

pe
at

ed
 f

or
 te

st
s 

of
 g

en
e-

ba
se

d 
as

so
ci

at
io

n 
w

ith
 D

SM
-V

 A
U

D
 s

ev
er

ity
 o

nl
y 

am
on

g 
ge

ne
s 

th
at

 w
er

e 
as

so
ci

at
ed

 w
ith

 b
et

a 
E

E
G

. T
ab

le
 3

 d
et

ai
ls

 th
e 

nu
m

be
r 

of
 S

N
Ps

 e
xa

m
in

ed
 in

 e
ac

h 
ge

ne
-s

et
, t

he
 n

um
be

r 
of

 S
N

Ps
 w

ith
in

 e
ac

h 
ge

ne
-s

et
 a

ss
oc

ia
te

d 
w

ith
 b

et
a 

E
E

G
 a

nd
 A

U
D

 (
p<

0.
05

),
 th

e 
nu

m
be

r 
of

 in
de

pe
nd

en
t 

si
gn

al
s 

re
pr

es
en

te
d 

am
on

g 
ea

ch
 o

f 
th

e 
SN

Ps
 te

st
ed

, a
nd

 th
e 

em
pi

ri
ca

l p
-v

al
ue

 b
as

ed
 o

n 
10

0,
00

0 
pe

rm
ut

at
io

ns
.

Int J Psychophysiol. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meyers et al. Page 29

Ta
b

le
 4

A
ss

oc
ia

tio
ns

 o
f 

pr
ev

io
us

ly
 r

ep
or

te
d 

G
A

B
R

A
2 

va
ri

an
ts

 a
nd

 f
as

t b
et

a 
E

E
G

 (
20

–2
8 

H
z;

 b
ip

ol
ar

 d
er

iv
at

io
n 

at
 th

e 
fr

on
to

-c
en

tr
al

 e
le

ct
ro

de
 p

ai
rs

 (
FZ

-C
Z

, F
3-

C
3,

 F
4-

C
4)

)

SN
P

B
as

e 
P

ai
r 

L
oc

at
io

n
M

aj
or

 A
lle

le
M

in
or

 A
lle

le
M

A
F

β
p-

va
lu

e
β

p-
va

lu
e

β
p-

va
lu

e

F
Z

-C
Z

F
3-

C
3

F
4-

C
4

rs
56

17
79

46
23

87
78

G
A

0.
59

−
0.

04
0.

04
6

0.
01

0.
68

0
0.

00
0.

98
0

rs
57

22
27

46
25

13
93

C
T

0.
59

−
0.

05
0.

01
4*

0.
00

0.
94

0
−

0.
01

0.
62

0

rs
57

34
00

46
25

20
66

T
C

0.
59

−
0.

04
0.

04
7

0.
01

0.
69

0
0.

00
0.

98
0

rs
53

27
80

46
26

13
66

T
C

0.
58

−
0.

04
0.

03
5

0.
01

0.
56

0
0.

00
0.

92
0

rs
54

85
83

46
26

33
44

G
A

0.
58

−
0.

06
0.

01
1*

0.
01

0.
82

0
−

0.
01

0.
72

0

rs
49

66
50

46
26

43
85

A
C

0.
58

−
0.

04
0.

05
0

0.
01

0.
60

0
0.

00
0.

94
0

rs
54

03
63

46
27

42
46

A
G

0.
58

−
0.

04
0.

03
9

0.
01

0.
61

0
0.

00
0.

95
0

rs
52

67
52

46
27

66
29

A
G

0.
58

−
0.

05
0.

03
1

0.
01

0.
58

0
0.

00
0.

95
0

rs
53

03
29

46
28

11
19

T
C

0.
58

−
0.

05
0.

03
1

0.
01

0.
58

0
0.

00
0.

95
0

rs
48

31
60

46
28

70
75

G
T

0.
58

−
0.

05
0.

02
5

0.
01

0.
64

0
0.

00
0.

95
0

rs
27

98
71

46
30

57
33

T
C

0.
57

−
0.

06
0.

00
9*

0.
00

0.
86

0
−

0.
01

0.
64

0

rs
27

98
67

46
30

83
03

A
C

0.
58

−
0.

05
0.

02
9

0.
01

0.
59

0
0.

00
0.

99
0

rs
27

98
66

46
30

97
64

A
G

0.
58

−
0.

04
0.

03
6

0.
01

0.
55

0
0.

00
0.

96
0

rs
27

98
63

46
31

30
22

C
A

0.
58

−
0.

04
0.

03
2

0.
01

0.
58

0
0.

00
0.

95
0

rs
27

98
58

46
31

45
93

T
C

0.
57

−
0.

06
0.

01
1*

0.
01

0.
83

0
−

0.
01

0.
70

0

rs
27

98
43

46
32

52
04

C
T

0.
57

−
0.

05
0.

02
8

0.
00

0.
98

0
−

0.
01

0.
68

0

rs
27

98
46

46
32

98
86

C
T

0.
55

−
0.

04
0.

06
6

0.
01

0.
59

0
0.

01
0.

70
0

rs
27

98
26

46
33

42
09

A
G

0.
55

−
0.

04
0.

05
9

0.
01

0.
59

0
0.

01
0.

77
0

rs
27

98
28

46
33

48
10

A
C

0.
55

−
0.

04
0.

04
5

0.
01

0.
66

0
0.

01
0.

77
0

rs
27

98
37

46
33

93
23

A
G

0.
57

−
0.

04
0.

03
1

0.
01

0.
77

0
0.

00
0.

83
0

rs
27

98
41

46
34

07
63

G
A

0.
57

−
0.

05
0.

01
7*

0.
00

0.
98

0
−

0.
01

0.
83

0

rs
18

99
57

46
34

66
79

A
G

0.
55

−
0.

04
0.

05
1

0.
01

0.
60

0
0.

01
0.

79
0

rs
14

42
06

2
46

37
70

76
A

G
0.

25
0.

03
0.

28
0

0.
02

0.
46

0
0.

03
0.

28
0

rs
37

56
00

7
46

39
10

64
C

T
0.

04
−

0.
02

0.
77

0
−

0.
02

0.
71

0
−

0.
03

0.
62

0

rs
89

42
69

46
39

36
12

C
T

0.
78

−
0.

01
0.

72
0

0.
03

0.
20

0
0.

01
0.

58
0

rs
15

45
23

4
46

40
44

13
A

G
0.

70
0.

01
0.

63
0

0.
03

0.
23

0
0.

02
0.

34
0

Int J Psychophysiol. Author manuscript; available in PMC 2018 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meyers et al. Page 30
* W

ith
st

an
ds

 a
 m

ul
tip

le
-t

es
t c

or
re

ct
io

n

Int J Psychophysiol. Author manuscript; available in PMC 2018 May 01.


	Abstract
	Introduction
	SAMPLE & METHODS
	Sample
	EEG Recording & Processing
	Genotyping, Imputation and Quality Review
	Association Analysis
	Functional Analyses
	Post-Hoc Analyses

	Results
	Association Analysis
	Functional Analyses
	Post-Hoc Analyses

	Discussion
	Limitations
	Conclusions

	References
	Fig. 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4

