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Abstract 

 
 

The climate is changing globally and in the northeast United States.  Evidence of 

climate change should also be found in Buffalo, New York, located along the eastern 

shore of Lake Erie.  My hypotheses are that average winter temperatures and snowfall 

should be increasing, Lake Erie should be freezing at a later date, and Lake Erie’s ice 

cover should affect snowfall amounts.  The warmer temperatures would lead to Lake 

Erie’s surface water temperature being higher, resulting in less ice cover.  The lack of ice 

would lead to more lake effect snow over Buffalo.  

The	  city	  of	  Buffalo,	  New	  York	  has	  experienced	  a	  limited	  change	  in	  climate	  

over	  the	  past	  67	  years.	  	  Winter	  snowfall	  and	  December	  snowfall	  and	  temperatures	  

have	  increased	  over	  time	  when	  a	  three	  year	  moving	  average	  is	  used	  to	  reduce	  the	  

high	  variability	  in	  the	  raw	  data.	  	  Winter	  temperatures	  and	  January	  and	  February	  

temperatures	  and	  snowfall	  amounts	  have	  not	  changed.	   Lake Erie’s ice date did not 

change over time.  A	  correlation	  test	  of	  the	  Lake	  Erie	  ice	  cover	  and	  winter	  snowfall	  

did	  show	  a	  negative	  correlation.	  	  
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The Changing Climate 
 

Climate change is evident on a global scale.  Winter temperatures have risen 

1.3°F each decade over the last 150 years in the northeast (Spanger-Siegfried, 2006).  

Temperatures have also increased in the Great Lakes region.  According to Wang et al., 

(2012), winter air temperatures increased by 1.5°C since 1973.  Water surface 

temperatures for the Great Lakes have increased over the past two decades.  The warmer 

temperatures are affecting lake ice cover.  Great Lakes’ ice cover has decreased by 71% 

since the 1970s. 

Average winter snowfall has decreased in the northeast by 4.6 cm each decade 

since the 1960s (Braswell et al. 2008).  However, along the eastern and southeastern 

shores of the Great Lakes, Burnett et al. (2002) have shown an increasing trend in 

snowfall for locations in the lee of the lakes.  The increase is explained by lake effect 

snow.  The lakes’ surface water temperature is warmer than the air during the cold season 

which provides a destabilization of the lower atmosphere leading to precipitation 

(Sousounis, 2003). 

The climate should be changing in Buffalo, New York.  The purpose of this study 

is to see how the climate is changing in Buffalo.  My first hypothesis is that average 

temperatures for the meteorological winter months of December, January, and February 

(DJF) should be increasing in Buffalo.  Winter snowfall amounts should also be 

increasing since Buffalo’s location is on the eastern edge of Lake Erie.  Lake Erie should 

be freezing at a later date since air and water surface temperatures are increasing.  My 

fourth hypothesis is a correlation should exist between winter snowfall amounts and 
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when Lake Erie freezes over.  When Lake Erie’s ice cover changes then snowfall 

amounts should inversely change.   

 
Documentation of Climate Change 
 

Recorded data, evaluated by Hansen et al. (2010), shows average global surface 

temperatures warmed by 0.17°C during the past four decades.  In another study, by 

Spanger-Siegfried (2006), found that average temperatures in the northern hemisphere 

have increased by 1°F during the last 150 years and in the northeast United States by 

nearly 0.5°F each decade since 1970.  Braswell et al. (2008) showed that minimum and 

maximum temperatures have increased by nearly 0.5°F per decade from 1965 to 2005.   

The highest rate of warming is happening in the coldest months, specifically January and 

February.  And yet another study, by Frumkin et al. (2008), agreed with the warming 

temperature trend and found that the global mean temperature has increased 0.6°C since 

the 1860s.   

The increasing temperatures allow air to hold more moisture.  Trenberth (2005) 

showed that air can hold about 7% more water per 1°C of warming.  More moisture in 

the air results in greater amounts of precipitation.  Another study revealed heavy 

precipitation days increased 26 percent among 34 northeast data collecting stations 

(Griffiths and Bradley, 2007).  Since 1970, precipitation has increased by about 5% 

compared to the previous 70 years (Karl, 1996). 

At the same time, less precipitation is falling as snowfall.  Braswell et al. (2008) 

showed the number of snow-covered days in winter has dropped 8.9 days per decade 

since the 1960s.  Data recorded daily at 11 weather observation sites from 1949 to 2000 

showed a significant decreasing annual trend in snow to precipitation ratios (Wake, 
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2005).  However, the eastern side of the Great Lakes is seeing increasing amounts of 

snow from lake effect snow.  Burnett et al. (2002) showed a significant increasing trend 

in snowfall at hundreds of lake-effect sites around the Great Lakes between 1951 and 

1980.  The increased lake effect snow results from increasing surface water temperatures.   

Lake effect snow is produced by large-scale weather systems during the cold 

season, when cooler air moves over the warmer lake water.  The temperature difference 

causes air parcels to move upward, water vapor condenses out and forms precipitation.  

Sousounis (2003) found that strong sensible and latent heat fluxes warm and moisten the 

air near the surface causing instability in the atmosphere.  Strong vertical motions 

develop and form precipitation.  The lakes are climatologically warmer than the air and 

provide heat and moisture to destabilize the lower atmosphere.  Enhanced precipitation is 

found along the lakeshores, downwind of the dominant airflow.  The peak time for the 

greatest lake-air temperature differences is during the cold season.  According to Niziol 

(1987), important weather parameters need to be present for the production of lake effect 

snow in Buffalo.  First, the temperature difference between the lake surface water and the 

air at the 850 millibar level around 1500m must be at least 13°C.  Second, the wind 

direction in the lower atmosphere from the surface up to about 3,000m needs to be from 

the west and southwest since Lake Erie’s greatest length is from the southwest to the 

northeast.  Air over the warmer lake water gains more moisture and can therefore 

precipitate. 

The average winter water surface temperatures of the Great Lakes have increased 

since the 1990s (Burnett et al., 2002), which has led to a change in lake ice cover.  The 

Great Lakes ice season has started increasingly later since the 1850s, and the amount of 
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ice is decreasing.  According to Wang et al., (2012) there was a significant drop in ice 

cover since the 1970s for all of the Great Lakes.  Lake Ontario had the largest drop in ice 

cover at 88%, and Lake Superior dropped 79%.  A lake with ice cannot produce nearly as 

much lake effect snow.  Ice formation indicates cooler surface water of 32°F or below.  

The lake-air temperature difference therefore decreases and so does instability in the 

atmosphere.  The increase in water temperatures results in a decrease in lake ice cover.  

Burnett et al. (2002) showed that the average surface water temperatures during the snow 

season for each of the Great Lakes showed an upward trend since the mid 1990s.  The 

water temperature changes may be contributing to the increasing lake effect snowfall 

along the lees of the lakes.  Richards (1964) showed ice cover lessens with maximum 

daytime temperatures just above 30°F.  When the ice cover decreases, more heat energy 

can be transferred into the lower atmosphere and destabilize the air.  When there is ice 

cover, less energy is transferred.  Cordeira et al. (2008) shows surface sensible heat 

fluxes over a frozen lake are much less than over an unfrozen lake.  Also, thicker ice 

decreases the heat energy available. 

 

Recording Buffalo’s Climate  

Daily average temperature (F) data for the meteorological winter (DJF) of 1943-

1944 to 2010-2011 was obtained from Buffalo climate data provided by the National 

Climatic Data Center (National Climatic Data Center, 2012) and the National Weather 

Service’s website (National Weather Service, 2005).  Winter snowfall amounts in inches 

were also obtained from the Buffalo climate data provided by the National Weather 

Service’s website (National Weather Service, 2009).  The temperatures and snowfall 
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amounts were recorded at the weather observation station at the Buffalo Niagara 

International Airport in Buffalo, New York.   

Winter Lake Erie surface water temperature data and ice cover start dates from 

the winter of 1943-1944 to 2010-2011 were obtained by the National Climatic Data 

Center (National Climatic Data Center, 2012) and the National Weather Service’s 

website (National Weather Service, 2010).  Lake Erie water temperature data is collected 

from the Buffalo Water Treatment Plant temperature gauge located on Lake Erie at the 

entrance to the Niagara River (National Weather Service, 2010).  The water temperature 

information is used by the National Weather Service in Buffalo to determine a start date 

for when Lake Erie is covered with ice.  Ice cover is determined by the lake water 

temperature being at 32° F and staying at or below that temperature.  The rest of the lake 

is shallower and freezes over sooner.  The ice dates of lake ice cover were verified using 

Lake Erie satellite imagery provided by the Great Lake Ice Atlas (National Oceanic and 

Atmospheric Administration; Figure 1).  More than 90% of the NWS ice dates matched 

NOAA’s available satellite imagery from 1973 to 2002.  Satellite coverage wasn’t 

available for meteorological use until the 1960’s and resolution wasn’t very good until 

the 1970’s.  The NWS observations match the historical satellite data. 

The monthly temperatures for December, January, and February were averaged to 

get a winter temperature for each of the 67 years.  The three monthly snowfall totals were 

summed to get winter snowfall for each year in the time period.  The time period from the 

winter of 1943-1944 to the winter of 2010-2011 was determined based on the location of 

the temperature and precipitation gauge at the Buffalo Niagara International Airport.  The 

gauge has not been moved during this time.  Prior to the winter of 1943, the gauge had 
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been located in downtown Buffalo along Lake Erie since 1884.  The gauge was moved 

inland 10 miles to the Buffalo Niagara International Airport in the summer of 1943.  A 

difference in temperatures and precipitation would be expected if the two locations were 

compared.   

The gauge data had been recorded manually by a meteorologist until December of 

1995 when it was switched to an Automated Surface Weather Observation Station 

(ASOS).  A Two Sample T-Test will verify there is no difference in the temperature and 

snowfall data before the change over from a manual to an automated weather station. 

A linear regression test will be used on the average temperature and snowfall data 

for the meteorological winter (DJF) from 1943-1944 to 2010-2011.  The tests will show 

if there is a linear trend in temperature or snowfall over time and whether either has gone 

up over the 67 year period and by how much. 

If there isn’t a trend, then a linear regression test will be used on average 

temperature and snowfall data for each of the meteorological winter months.  Lake Erie is 

often frozen in January and February when there may be more consistent temperatures 

and snowfall because the ice cover provides a more stable atmosphere and temperate 

conditions.  The later winter months may be affecting overall results of the winter 

regression tests. 

If a trend still isn’t seen, then a three year moving average will be used on 

temperature and snowfall data for the winter and each of the winter months.  In a moving 

average, the first three terms are averaged, then the next three starting with the second 

term, etc.  Linear regression tests will be used on the three year moving average 
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temperature and snowfall data for the meteorological winter as well as for each of the 

meteorological winter months.   

A moving average helps smooth over short-term variation in a data set and lowers 

the variability.  The method doesn’t produce a trend but rather finds it.  According to 

StatSoft (2013), using a moving average is a common technique to smooth the data and 

filter out the noise.  The method produces results that are less biased by outliers and 

variability.  A trend can more easily be seen in a data set with less variability since the 

extremes don’t have a disproportionate influence on the end results.  A three year moving 

average is relatively short compared to the length of the data in years and will not have as 

large of an effect on the data.  A graph of the raw data and moving average show the 

same line with the same slope.  The moving average is not fabricating data but reducing 

the variation so the trend becomes significant.  The trend line isn’t moved but is 

smoothed over the short term variation so the line isn’t as varied and the tests have a 

clearer vision of a trend.  

However, a study rebuts the use of a moving average.  Hansen (2010) states that 

moving averages are sufficient to minimize variability, but running averages on data are 

ways to make the trends clearer without waiting for additional decades to pass, but trends 

may be enhanced inaccurately.  It is possible to find almost any trend for a specific 

amount of time based on start and end dates but it doesn’t mean it’s a meaningful result.   

A linear regression test will be used on Lake Erie’s ice in date to show if Lake 

Erie is freezing at a later date over time.  To complete the linear regression tests, first a T-

test statistic will be calculated to determine if the slope of the regression line of data is 

equal to zero or not equal to zero.	  	  A	  zero	  slope	  will	  mean	  no	  change.	  	  The F-test portion 
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of the linear regression test will also be conducted to determine if the line is statistically 

significant.	  	  Both the T-test and F-test statistics will be calculated by Minitab. 

A correlation coefficient test will be used to see if a correlation exists between 

meteorological winter snowfall and Lake Erie ice cover.  A Spearman Correlation 

Coefficient will be used because the boxplot for winter snowfall shows an outlier present 

in the data, and the sample size is large (Figure 2).  The test will answer if snowfall 

amounts change when the lake’s ice cover changes.  A number system was used for the 

ice date data.  December 31st was given the number 0.  Any date previous to that is given 

a negative number and any date after December 31st is given a positive number. 

 

Buffalo’s	  Climate,	  Results	  

	   Two	  Sample	  t-‐tests	  were	  run	  on	  temperatures	  and	  snowfall	  amounts	  during	  

a	  15	  year	  period	  before	  1995	  and	  after	  1995.	  	  The	  results	  show	  there is no difference 

in the mean temperature and mean snowfall data between manually collected data and 

that from the automated weather station after 1995.  Therefore the data before and after 

1995 can be combined to form a larger data set.  The 15 year period was chosen to 

compare the methodologies used before and after 1995.  A longer period of time may 

have included climate change in addition to methodology.	  

Trend	  lines	  on	  scatterplots	  of	  winter	  temperatures	  and	  snowfall	  over	  time	  

show	  a	  possible	  trend,	  especially	  for	  winter	  snowfall	  (Figures	  3,	  4).	  	  Linear regression 

tests were done on average winter temperatures and snowfall.  Lines	  were	  not	  

statistically	  significant	  (Tables	  1,	  2),	  so	  there	  is	  not	  a	  linear	  trend	  over	  time	  for	  

either	  temperature	  or	  snowfall.	  	  	  	  
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The meteorological winter months of December, January, and February were then 

tested separately for possible trends.  Trend lines	  on	  scatterplots	  of	  monthly	  

temperatures	  over	  time	  show	  a	  possible	  trend	  for	  December	  but	  not	  for	  January	  and	  

February	  (Figures	  5,	  6,	  7).	  	  Linear regressions were done for temperature data for the 

individual winter months, but the	  linear	  relationship	  between	  temperature	  and	  time	  

for	  each	  month	  was	  not	  statistically	  significant	  (Table	  1).	  	  However	  the	  T	  and	  F	  

statistics	  were	  close	  to	  the	  critical	  values	  for	  December.	  	   

Trend	  lines	  on	  scatterplots	  of	  monthly	  snowfall	  over	  time	  show	  a	  possible	  

trend	  for	  December	  but	  not	  for	  January	  or	  February	  (Figures	  8,	  9,	  10).	  	  Linear 

regressions were done for snowfall data for the individual winter months, but the	  linear	  

relationship	  between	  snowfall	  and	  time	  for	  each	  month	  was	  not	  statistically	  

significant	  (Table	  2).	  	  However	  the	  T	  and	  F	  statistics	  were	  close	  to	  the	  critical	  values	  

for	  December.	  	  	  

Winter	  temperatures	  and	  snowfall	  have	  not	  changed	  over	  the	  past	  67	  years	  

in	  Buffalo.	  	  There	  isn’t	  a	  change	  in	  temperatures	  or	  snowfall	  over	  time	  for	  each	  

winter	  month	  of	  December,	  January,	  and	  February.	  	  The	  statistical	  tests	  aren’t	  

picking	  up	  a	  significant	  change	  because	  of	  the	  high	  variability	  in	  the	  data	  sets,	  

mainly	  for	  winter	  snowfall	  and	  December	  temperatures	  and	  snowfall.	  	  There	  is	  less	  

variability	  for	  the	  months	  of	  January	  and	  February.	  	  	  A	  three	  year	  moving	  average	  

was	  used	  to	  cut	  down	  the	  variability	  and	  extreme	  temperatures	  and	  snowfall.	  	  A 

trend can more easily be seen in data with less variability.  Extremes can influence the 

end results. 	  

A linear regression test was then used on the moving average winter temperatures 
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and snowfall.  The	  tests	  show	  a	  linear	  relationship	  between	  winter	  snowfall	  and	  

time,	  but	  no	  change	  in	  temperatures	  (Table	  3,	  4).	  	  Trend	  lines	  on	  scatterplots	  of	  

winter	  temperatures	  over	  time	  show	  no	  trend,	  however	  a	  trend	  is	  seen	  in	  increasing	  

winter	  snowfall	  (Figures	  11,	  12).	  	  The	  change	  in	  winter	  snowfall	  proves	  my	  second	  

hypothesis	  but	  no	  change	  in	  temperatures	  disproves	  my	  first	  hypothesis.	  

Linear regressions were done on the moving average temperature data for the 

winter months.  December	  was	  the	  only	  month	  that	  showed	  a	  linear	  relationship	  

between	  temperature	  and	  time	  (Table	  3).	  	  Trend	  lines	  on	  scatterplots	  of	  the	  monthly	  

temperature	  data	  show	  a	  trend	  for	  December	  but	  not	  for	  January	  and	  February	  

(Figures	  13,	  14,	  15).	  

Linear regressions were done on the moving average snowfall data for the winter 

months.  December	  was	  the	  only	  month	  that	  showed	  a	  linear	  relationship	  between	  

snowfall	  and	  time	  (Table	  4).	  	  Trend	  lines	  on	  scatterplots	  of	  the	  monthly	  temperature	  

data	  show	  a	  trend	  for	  December	  but	  not	  for	  January	  and	  February	  (Figures	  16,	  17,	  

18).	  

A linear regression was done on Lake Erie’s freeze date (Figure 19).  The test	  

showed	  there	  is	  not	  a	  linear	  relationship	  between	  Lake	  Erie’s	  freeze	  date	  and	  time.	  	  

The	  F-‐statistic	  is	  1.94	  and	  the	  probability	  of	  outcome	  (p-‐value)	  is	  0.169.	  	  An	  alpha	  of	  

0.05	  was	  used.	  	  	  The	  relationship	  is	  not	  statistically	  significant.  Lake Erie’s freeze 

date has not changed over the past 67 years.  The lack of change disproves my third 

hypothesis.	  
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A	  Spearman’s correlation coefficient	  test	  was	  conducted	  on	  meteorological 

winter (DJF) snowfall and winter Lake Erie ice cover.  The correlation coefficient of        

-0.339 is statistically significant.	  	  The	  probability	  of	  outcome	  (p-‐value)	  is	  0.005.	  	  An	  

alpha	  of	  0.05	  was	  used.  A correlation does exist between winter snowfall amounts and 

when Lake Erie freezes over (see appendix).  When Lake Erie’s ice cover increases then 

the snowfall amount decreases.  Ice cover explains 11.5% of the variation of snowfall.  

The correlation between ice cover and snowfall proves my fourth hypothesis.   

 

Buffalo’s	  Climate	  Is	  Changing	  

Winter	  and	  December	  snowfall	  have	  been	  increasing	  over	  the	  last	  67	  years	  in	  

Buffalo	  when	  a	  three	  year	  moving	  average	  was	  used.	  	  A	  moving	  average	  lowered	  the	  

variability	  and	  allowed	  an	  existing	  trend	  to	  be	  seen.	  	  The	  results	  agree	  with	  my	  

hypothesis.	  	  The	  study	  shows	  winter	  snowfall	  has	  gone	  up	  by	  20.5	  inches	  and	  

December	  snowfall	  by	  11.5	  inches.	  	  The	  results	  concur	  with	  other	  studies	  done	  in	  

the	  Great	  Lakes	  Region.	  	  As explained by Richards (1964), cities located on the lee side 

of a Great Lake have experienced increasing snowfall amounts over time.	  	  A	  study	  by	  

Leathers	  (1996),	  showed	  when	  cold	  arctic	  air	  moves	  over	  the	  warmer	  lake	  water,	  

from	  a	  larger	  scale	  system,	  air	  rises	  and	  condenses	  to	  form	  clouds	  and	  snowfall	  

downwind	  of	  the	  lakes.	  	  Lake	  Erie	  is	  usually	  not	  frozen	  over	  in	  December,	  but	  is	  for	  

much	  of	  January	  into	  February	  (National Weather Service, 2010).  More moisture is 

available for lake effect snow to develop during the first part of winter.  Ice	  cover	  and	  

lack	  of	  moisture	  lowers	  the	  chance	  of	  lake	  effect	  snow	  later	  in	  winter.  Results from 

my study showed snowfall amounts didn’t change for January and February probably 
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because there isn’t as much lake effect snow relative to total snowfall.  

Winter,	  January,	  and	  February	  temperatures	  did	  not	  change	  over	  time.	  	  The	  

results	  contradict	  my	  hypothesis	  and	  other	  studies	  conducted	  across	  the	  Great	  

Lakes	  Region	  and	  northeastern	  United	  States.	  	  A	  study	  by	  Spanger-Siegfried (2006), 

found that annual temperatures in the northeast have increased by more than 1.5° F since 

1970.  Seven weather observation stations collected daily temperature data since 1900 

and showed increasing winter temperatures (Wake, 2005).  However, my study showed 

that December	  temperatures	  increased	  by	  about	  1.7° F over the 67 year period.  The 

results agree with my hypothesis.  Warmer pre winter temperatures in the summer and 

fall could be increasing December air temperatures and Lake Erie’s water temperature.  

Then large scale winter events with arctic air drop the temperatures back to average for 

January and February.  Also, strong northeastern winds cause upwelling on the 

northeastern end of Lake Erie near Buffalo and help quickly cool the lake and air 

temperatures.   	  

All	  of	  the	  raw	  snowfall	  and	  temperature	  data	  sets	  had	  high	  variability.	  	  The	  

highest	  variability	  was	  found	  in	  winter	  snowfall	  and	  December	  snowfall	  and	  

temperatures.	  	  	  The	  three	  year	  moving	  average	  brought	  the	  extreme	  data	  points	  

closer	  to	  the	  regression	  line	  in	  the	  highly	  varied	  data	  sets	  and	  a	  trend	  was	  

statistically	  significant. 

Lake Erie’s ice date did not change over time.  The results contradict my 

hypothesis and other studies on the Great Lakes Region.  According to (Burnett et al., 

2002), increasing surface water temperatures are decreasing ice cover on the Great Lakes.  
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The decrease in ice cover is leading to a later start to the lake being covered with ice.  

Another study, by Wang et al., (2012), found Lake Erie Ice cover declined by 50% since 

the 1970s.  In my study, January and February temperatures are not changing therefore 

Lake Erie continues to freeze on average in mid to late January. 

A negative correlation exists between Lake Erie’s ice cover and winter snow 

amounts.  As lake ice increases, snow amounts decrease.  The results agree with my 

hypothesis and with Cordeira et al. (2008), who showed that more heat energy and 

moisture are available when a lake’s ice cover decreases.  This decrease in ice can lead to 

increased lake effect snow amounts. 

There	  are	  inconsistencies	  and	  contradictions	  among	  climate	  change	  

literature.	  	  Spanger-Siegfried (2006) found winter temperatures have risen 1.3°F each 

decade over the last 150 years in the northeast.  But according to Wang et al., (2012), 

winter air temperatures have only increased by 1.5°C since 1973 in the same region.	  	  In	  

my	  own	  research	  I	  also	  saw	  inconsistencies.	  	  My	  results	  in	  the	  correlation	  test	  found 

ice cover only explains 11.5% of the variation of snowfall even though literature shows 

lake effect snow is drastically increased when there is less lake ice cover.  The	  

inconsistencies	  in	  my	  research	  could	  be	  explained	  by	  not	  having	  the	  winter	  snow	  

data	  broken	  up	  into	  lake	  effect	  snowfall	  versus	  larger	  scale	  snowfall	  snow	  events	  

from	  a	  low	  pressure	  system.	  	  It’s	  hard	  to	  tell	  which	  years	  had	  more	  snowfall	  from	  

lake	  effect	  or	  from	  an	  increased	  frequency	  of	  larger	  systems	  moving	  through	  

Buffalo.	  	  	  

	   For	  future	  work,	  I	  would	  take	  a	  three	  year	  moving	  average	  on	  the	  Lake	  Erie	  

freeze	  date	  since	  there	  is	  high	  variability	  in	  the	  raw	  data	  set.	  	  I	  would	  run	  a	  linear	  
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regression	  test	  to	  see	  if	  there	  is	  a	  trend.	  	  Next,	  I	  would	  try	  to	  separate	  lake	  effect	  

snow	  events	  from	  larger	  systems	  snow	  events	  and	  test	  to	  see	  if	  lake	  effect	  snow	  is	  

changing	  over	  time.	  	  This	  would	  give	  a	  clearer	  picture	  of	  lake	  effect	  snow	  trends.	  	  

Finally,	  I	  would	  look	  for	  an	  increasing	  trend	  in	  variability	  to	  see	  if	  extremes	  are	  

becoming	  more	  common	  in	  winter	  temperature	  and	  snowfall	  data.	  	  The	  variability	  

may	  also	  further	  explain	  why	  a	  trend	  is	  only	  found	  in	  winter	  snowfall	  and	  December	  

snowfall	  and	  temperatures	  over	  time	  when	  using	  a	  three	  year	  moving	  average.	  	  

Moving	  averages	  are	  more	  effective	  on	  data	  sets	  that	  have	  higher	  variability.	  	  

	  

Conclusion	  

	   Buffalo’s	  winter	  climate	  is	  changing.	  	  A	  three	  year	  moving	  average	  was	  used	  

to	  smooth	  out	  variability	  in	  the	  raw	  data.	  	  The	  moving	  average	  data	  produced	  a	  

statistically	  significant	  trend	  that	  showed	  the	  climate	  is	  changing.	  	  Winter	  and	  

December	  snowfall	  has	  increased	  during	  the	  past	  67	  years.	  	  January	  and	  February	  

snowfall	  has	  not	  changed.	  	  Winter,	  January,	  and	  February	  temperatures	  have	  not	  

changed.	  	  December	  temperatures	  have	  increased.	  	  Winter	  and	  December	  snowfall	  

and	  December	  temperatures	  have	  the	  highest	  variability	  in	  the	  raw	  data	  sets	  and	  

are	  affected	  the	  most	  by	  the	  moving	  average.	  	  	  

Lake	  Erie	  is	  not	  freezing	  over	  at	  a	  later	  date.	  	  Lake	  ice	  cover	  and	  snowfall	  

have	  a	  negative	  correlation.	  	  When	  ice	  cover	  decreases,	  lake	  effect	  snow	  increases.	  	  

Lake	  Erie	  freezes	  over	  on	  average	  in	  mid	  January.	  	  The	  average	  ice	  in	  date	  is	  not	  

changing.	  	  The	  lake	  doesn’t	  usually	  freeze	  over	  in	  December	  and	  more	  lake	  effect	  

snow	  can	  be	  produced.	  	  Air	  temperatures	  can	  fluctuate	  more	  when	  the	  lake	  isn’t	  iced	  
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over.	  	  Pre	  winter	  warmth	  could	  be	  causing	  December	  temperatures	  to	  be	  warmer.	  	  

Large	  scale	  winter	  systems	  finally	  bring	  down	  the	  air	  and	  lake	  temperatures.	  	  More	  

research	  can	  be	  done	  to	  verify	  the	  meteorological	  causes.	  	  Similar	  testing	  of	  summer	  

and	  fall	  temperatures	  in	  Buffalo	  could	  reveal	  trends	  that	  are	  impacting	  the	  winter	  

climate.	  
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Tables:	  
	  
	  
	  
	  
Linear	  Regression 
Tests	  ,	  67	  Years	  

F-‐Statistic	   Significance	  

Winter	  Temps	  (F)	  
Vs.	  Time	  	  

0.74	   Not	  Significant	  	  
(p=	  0.393)	  

Dec.	  Temps	  (F) 
Vs.	  Time	  

1.56	   Not	  Significant	  	  
(p=	  0.216)	  

Jan.	  Temps	  (F) 
Vs.	  Time	  

0.03	   Not	  Significant	  	  
(p=	  	  0.862)	  

Feb.	  Temps	  (F) 
Vs.	  Time	  

0.10	   Not	  Significant	  	  
(p=	  	  0.752)	  

Table	  1.	  Linear	  regression	  tests	  of	  winter	  temperatures	  (F)	  and	  temperatures	  for	  
December,	  January,	  and	  February	  from	  1943	  to	  2011.	  An	  alpha	  value	  of	  0.05	  was	  
used.	  
	  
	  
	  
Linear	  Regression 
Tests	  ,	  67	  Years	  

F-‐Statistic	   Significance	  

Winter	  Snowfall	  
(inches)	  Vs.	  Time	  

3.83	   Not	  Significant	  
(p=	  0.055)	  

Dec.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

3.74	   Not	  Significant	  	  
(p=	  	  0.57)	  

Jan.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

1.3	   Not	  Significant	  	  
(p=	  	  0.257)	  

Feb.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

0.01	   Not	  Significant	  	  
(p=	  	  0.938)	  

Table	  2.	  Linear	  regression	  tests	  on	  winter	  snowfall	  (inches)	  and	  snowfall	  for	  
December,	  January,	  and	  February	  from	  1943	  to	  2011.	  	  An	  alpha	  value	  of	  0.05	  was	  
used.	  
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Linear	  Regression	  
Tests	  With	  Moving	  Avg.	  

F-‐Statistic	   Significance	  

Winter	  Temps	  (F)	  
Vs.	  Time	  	  

0.83	   Not	  Significant	  	  
(p=	  	  0.366)	  

Dec.	  Temps	  (F) 
Vs.	  Time	  

4.59	   Yes	  Significant	  	  
(p<	  0.05)	  

Jan.	  Temps	  (F) 
Vs.	  Time	  

0.03	   Not	  Significant	  	  
(p=	  	  0.865)	  

Feb.	  Temps	  (F) 
Vs.	  Time	  

0.13	   Not	  Significant	  	  
(p=	  	  0.82)	  

Table	  3.	  Linear	  regression	  tests	  with	  three	  year	  moving	  average	  of	  winter	  
temperatures	  (F)	  and	  temperatures	  for	  December,	  January,	  and	  February	  from	  1943	  
to	  2011.	  	  An	  alpha	  value	  of	  0.05	  was	  used.	  
	  

Linear	  Regression	  Tests	  
With	  Moving	  Avg.	  

F-‐Statistic	   Significance	  

Winter	  Snowfall	  
(inches)	  Vs.	  Time	  

10.21	   Yes	  Significant	  
(p<0.05)	  

Dec.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

12.02	   Yes	  Significant	  	  
(p<	  0.05)	  

Jan.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

3.82	   Not	  Significant	  	  
(p=	  	  0.055)	  

Feb.	  	  Snowfall	  (inches)	  
Vs.	  Time	  

0.13	   Not	  Significant	  	  
(p=	  	  0.72)	  

Table	  4.	  Linear	  regression	  tests	  with	  three	  year	  moving	  average	  on	  winter	  snowfall	  
(inches)	  and	  snowfall	  for	  December,	  January,	  and	  February	  from	  1943	  to	  2011.	  	  An	  
alpha	  value	  of	  0.05	  was	  used.	  
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Figures:	  
 

 
Figure 1.  An example from the Great Lakes Ice Cover Atlas by NOAA for Winter 
2000. Lake Erie was frozen over by late January in 2000, indicated by the blue and 
patchy dark green colors. 
 

 
Figure 2. Boxplot showing an outlier in winter snowfall data from the winter of  
1943-44 to the winter of 2010-2011. 
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Figure 3.  Scatterplot of winter temperatures from 1943 to 2011.  The trend line 
shows a slight possible change in temperatures. 

Figure 4.  Scatterplot of winter snowfall from 1943 to 2011.  The trend line shows a 
possible change in snowfall. 

18	  

20	  

22	  

24	  

26	  

28	  

30	  

32	  

34	  

1940	   1950	   1960	   1970	   1980	   1990	   2000	   2010	   2020	  

Te
m
pe
ra
tu
re
s	  
(F
)	  

Year	  

Winter	  Average	  Temperatures	  	  	  
1943-‐2011	  

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

160	  

1940	   1950	   1960	   1970	   1980	   1990	   2000	   2010	   2020	  

Sn
ow

fa
ll	  
(i
nc
he
s)
	  

Year	  

Winter	  Snowfall	  	  1943-‐2011	  
	  



	   24	  

Figure 5.  Scatterplot of December temperatures from 1943 to 2010.  The trend line 
shows a possible change in temperatures. 

 

Figure 6.  Scatterplot of January temperatures from 1943 to 2011.  The trend line 
shows no change in temperatures. 
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Figure 7.  Scatterplot of February temperatures from 1943 to 2011.  The trend line 
shows no change in temperatures. 

Figure 8.  Scatterplot of December snowfall from 1943 to 2010.  The trend line shows 
a possible change in snowfall. 

12	  

17	  

22	  

27	  

32	  

1940	   1950	   1960	   1970	   1980	   1990	   2000	   2010	   2020	  

Te
m
pe
ra
tu
re
s	  
(F
)	  

Year	  

February	  Average	  Temperatures	  	  
1943-‐2011	  

	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

1940	   1950	   1960	   1970	   1980	   1990	   2000	   2010	   2020	  

Sn
ow

fa
ll	  
(i
nc
he
s)
	  

Year	  

December	  Snowfall	  	  1943-‐2011	  
	  



	   26	  

Figure 9.  Scatterplot of January snowfall from 1943 to 2011.  The trend line shows a 
slight possible change in snowfall. 

Figure 10.  Scatterplot of February snowfall from 1943 to 2011. The trend line shows 
no change in snowfall. 
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Figure 11.  Graph of three year moving average of winter temperatures from 1943 to 
2011. The trend line shows a slight possible change in temperatures. 
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Figure 12.  Graph of three year moving average of winter snowfall from 1943 to 
2011.  The trend line shows a possible change in snowfall.	  
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Figure 13.  Graph of three year moving average of December temperatures from 1943 
to 2010.  The trend line shows a possible change in temperatures. 
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Figure 14.  Graph of three year moving average of January temperatures from 1943 to 
2011.  The trend line shows no change in temperatures.	  
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Figure 15.  Graph of three year moving average of February temperatures from 1943 
to 2011.  The trend line shows no change in temperatures.	  
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Figure 16.  Graph of three year moving average of December snowfall from 1943 to 
2010.  The trend line shows a possible change in snowfall.	  
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Figure 17.  Graph of three year moving average of January snowfall from 1943 to 
2011.  The trend line shows a possible change in snowfall. 
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Figure 18.  Graph of three year moving average of February snowfall from 1943 to 
2011.  The trend line shows no change in snowfall.	  
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Figure 19.  Graph of three year moving average of winter Lake Erie ice cover from 1943 
to 2011.  The trend line shows a possible change in the ice date. 
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APPENDIX: 

 

Linear Regression Results Tables 

Linear Regression 
Tests , 67 Years 
 

 Winter Temps (F) 
Vs. Time  
 

Winter Snowfall (inches) Vs. 
Time 
 

T-Statistic 0.86 1.96 
T-Critical 2.0 2.0 
Null hypothesis Accept Accept 
Significance No No 
F-Statistic 0.74 3.83 
F-Critical 4.0 4.0 
Null hypothesis Accept Accept 
Significance No No 
Linear regression tests of winter temperatures (F) over time (year) and winter snowfall (inches) over time 
(year) from 1943 to 2011. 
 
 
Linear Regression 
Tests , 67 Years 

Dec. Temps (F) 
Vs. Time  

Jan. Temps (F) 
Vs. Time 

Feb. Temps (F) 
Vs. Time 

T-Statistic 1.25 0.17 0.32 
T-Critical 2.0 2.0 2.0 
Null hypothesis Accept Accept Accept 
Significance No No No 
F-Statistic 1.56 0.03 0.1 
F-Critical 4.0 4.0 4.0 
Null hypothesis Accept Accept Accept 
Significance No No No 
Linear regression tests on temperatures (F) for December, January, and February over time (year) from 
1943 to 2011. 
 
 
Linear Regression 
Tests, 67 Years 

Dec. Snowfall (inches) 
Vs. Time 

Jan. Snowfall (inches) 
Vs. Time 

Feb. Snowfall (inches) 
Vs. Time 

T-Statistic 1.94 1.14 0.08 
T-Critical 2.0 2.0 2.0 
Null hypothesis Accept Accept Accept 
Significance No No No 
F-Statistic 3.74 1.3 0.01 
F-Critical 4.0 4.0 4.0 
Null hypothesis Accept Accept Accept 
Significance No No No 
Linear regression tests on snowfall (inches) for December, January, and February over time (year) from 
1943 to 2011. 
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Linear Regression 
Tests With Moving Avg. 

Winter Temps (F) 
Vs. Time  

Winter Snowfall (inches) Vs. 
Time 

T-Statistic 0.91 3.20 
T-Critical 2.0 2.0 
Null hypothesis Accept Reject 
Significance No Yes 
F-Statistic 0.83 10.21 
F-Critical 4.0 4.0 
Null hypothesis Accept Reject 
Significance No Yes 
Linear regression tests with three year moving average of winter temperatures (F) over time (year) and 
winter snowfall (inches) over time (year) from 1943 to 2011. 
 

Linear Regression 
Tests With Moving 
Avg. 

Dec. Temps (F) 
Vs. Time  

Jan. Temps (F) 
Vs. Time 

Feb. Temps (F) 
Vs. Time 

T-Statistic 2.14 0.17 0.46 

T-Critical 2.0 2.0 2.0 

Null hypothesis Reject Accept Accept 

Significance Yes No No 

F-Statistic 4.59 0.03 0.05 

F-Critical 4.0 4.0 4.0 

Null hypothesis Reject Accept Accept 

Significance Yes No No 

Linear regression tests with three year moving average of temperatures (F) for December, January, and 
February over time (year) from 1943 to 2011. 
 
Linear Regression 
Tests With Moving 
Avg. 

Dec. Snowfall (inches) 
Vs. Time 

Jan. Snowfall (inches) 
Vs. Time 

Feb. Snowfall (inches) 
Vs. Time 

T-Statistic 3.47 1.95 0. 0.3 
T-Critical 2.0 2.0  2.0 
Null hypothesis Reject Accept Accept 
Significance Yes No No 
F-Statistic 12.02 3.82 0.13 
F-Critical 4.0 4.0 4.0 
Null hypothesis Reject Accept Accept 
Significance Yes No No 
Linear regression tests with three year moving average on snowfall (inches) for December, January, and 
February over time (year) from 1943 to 2011. 
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Minitab Output: 

Two-Sample T-Test and CI: winter temps pre 1995, winter temps post 1995  
Two-sample T for winter temps pre 1995 vs winter temps post 1995 
 
                         N   Mean  StDev  SE Mean 
winter temps pre 1995   18  26.02   3.09     0.73 
winter temps post 1995  18  27.71   3.10     0.73 
 
Difference = mu (winter temps pre 1995) - mu (winter temps post 1995) 
Estimate for difference:  -1.69 
95% CI for difference:  (-3.79, 0.41) 
T-Test of difference = 0 (vs not =): T-Value = -1.64  P-Value = 0.111  DF = 33 
 
Two-Sample T-Test and CI: winter snow pre 1995, winter snow post 1995  
Two-sample T for winter snow pre 1995 vs winter snow post 1995 
                        N  Mean  StDev  SE Mean 
winter snow pre 1995   18  72.5   34.8      8.2 
winter snow post 1995  18  73.2   21.9      5.2 
Difference = mu (winter snow pre 1995) - mu (winter snow post 1995) 
Estimate for difference:  -0.67 
95% CI for difference:  (-20.54, 19.19) 
T-Test of difference = 0 (vs not =): T-Value = -0.07  P-Value = 0.945  DF = 28 
Explanation: Compared the mean snowfall amount before and after the 1995 and found no significant 
difference at an alpha at 0.05 and not assuming equal variance. 
 
Linear Regression test for Winter Temperatures (F) over time (year) from 1943-44 to 2010-2011: 
 
This is the procedure for all the linear regression tests.  The hypothesis were the same for all.  The critical 
statistics varied depending on sample size 

Regression Analysis: AVG winter temps_1 versus Year 
The regression equation is 
AVG winter temps_1 = - 3.6 + 0.0153 Year_3 
Predictor     Coef  SE Coef      T      P 
Constant     -3.60    35.28  -0.10  0.919 
Year_3     0.01532  0.01784   0.86  0.393 
S = 2.95075   R-Sq = 1.1%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    6.423  6.423  0.74  0.393 
Residual Error  67  583.365  8.707 
Total           68  589.788 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
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-t statistic from sample (minitab output):  T=   0.86 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 
F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.74 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  1.1 % 

 
Linear Regression test for Winter Snowfall (inches) over time (year) from 1943-44 to 2010-2011: 
 
Regression Analysis: total winter snow versus year 
The regression equation is 
total winter snow_2 = - 520 + 0.297 yearss 
Predictor    Coef  SE Coef      T      P 
Constant   -520.5    299.8  -1.74  0.087 
yearss     0.2966   0.1515   1.96  0.055 
S = 25.0704   R-Sq = 5.4%   R-Sq(adj) = 4.0% 
Analysis of Variance 
Source          DF       SS      MS     F      P 
Regression       1   2407.1  2407.1  3.83  0.055 
Residual Error  67  42111.3   628.5 
Total           68  44518.4 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) = 2.0 
(two tailed t test) 
-t statistic from sample (minitab output)=   1.96 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between snowfall and temperature. 
F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 
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H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) = 4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F=   3.83 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The explained mean square is less than or equal to the unexplained mean square. 

- The line is not statistically significant. 

Goodness of fit:  5.4 % 

Linear Regression test for December Temperatures (F) over time (year) from 1943-44 to 2010-2011: 
Regression Analysis: dec temps versus Year 
The regression equation is 
dec_1 = - 34.8 + 0.0326 Year_3 
Predictor     Coef  SE Coef      T      P 
Constant    -34.80    51.54  -0.68  0.502 
Year_3     0.03257  0.02606   1.25  0.216 
S = 4.31071   R-Sq = 2.3%   R-Sq(adj) = 0.8% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    29.04  29.04  1.56  0.216 
Residual Error  67  1245.01  18.58 
Total           68  1274.05 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   1.25 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 1.56 
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-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  2.3 % 

Linear Regression test for January Temperatures (F) over time (year) from 1943-44 to 2010-2011: 
Regression Analysis: jan temps versus Year  
The regression equation is 
jan_1 = 14.4 + 0.0052 Year_3 
Predictor     Coef  SE Coef     T      P 
Constant     14.37    59.41  0.24  0.810 
Year_3     0.00524  0.03004  0.17  0.862 
S = 4.96905   R-Sq = 0.0%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1     0.75   0.75  0.03  0.862 
Residual Error  67  1654.33  24.69 
Total           68  1655.08 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.17 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) = 4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.03 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  0 % 

Linear Regression test for February Temperatures (F) over time (year) from 1943/44 to 2012: 
Regression Analysis: feb temps versus Year 
The regression equation is 
feb_1 = 9.6 + 0.0081 Year_ 
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Predictor     Coef  SE Coef     T      P 
Constant      9.62    50.82  0.19  0.850 
Year_3     0.00814  0.02569  0.32  0.752 
S = 4.25067   R-Sq = 0.1%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1     1.82   1.82  0.10  0.752 
Residual Error  67  1210.57  18.07 
Total           68  1212.39 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.32 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) = 4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.1 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  0.1 % 

 
Linear Regression test for December Snowfall (inches) over time (year) from 1943-44 to 2010-2011: 
 
Regression Analysis: dec snow versus year  
The regression equation is 
dec = - 346 + 0.187 yearss 
Predictor     Coef  SE Coef      T      P 
Constant    -345.9    190.9  -1.81  0.074 
yearss     0.18677  0.09651   1.94  0.057 
S = 15.9669   R-Sq = 5.3%   R-Sq(adj) = 3.9% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    954.8  954.8  3.74  0.057 



	   39	  

Residual Error  67  17081.1  254.9 
Total           68  18035.8 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) = 2.0 
(two tailed t test) 
-t statistic from sample (minitab output)=   1.94 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between snowfall and temperature. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) = 4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F=   3.74 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The explained mean square is less than or equal to the unexplained mean square. 

- The line is not statistically significant. 

Goodness of fit:  5.3 % 

Linear Regression test for January Snowfall (inches) over time (year) from 1943/44 to 2012: 
Regression Analysis: jan snow versus year  
The regression equation is 
jan = - 183 + 0.105 yearss 
Predictor     Coef  SE Coef      T      P 
Constant    -182.9    181.8  -1.01  0.318 
yearss     0.10496  0.09188   1.14  0.257 
S = 15.2011   R-Sq = 1.9%   R-Sq(adj) = 0.4% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    301.5  301.5  1.30  0.257 
Residual Error  67  15481.9  231.1 
Total           68  15783.4 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
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-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) = 2.0 
(two tailed t test) 
-t statistic from sample (minitab output)=   1.14 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between snowfall and temperature. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F=   1.3 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The explained mean square is less than or equal to the unexplained mean square. 

- The line is not statistically significant. 

Goodness of fit:  1.9 % 

Linear Regression test for February Snowfall (inches) over time (year) from 1943-44 to 2010-2011: 
 
Regression Analysis: feb snow versus year 
The regression equation is 
feb = 8 + 0.0048 years 
Predictor     Coef  SE Coef     T      P 
Constant       8.4    122.0  0.07  0.946 
yearss     0.00483  0.06167  0.08  0.938 
S = 10.2031   R-Sq = 0.0%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF      SS     MS     F      P 
Regression       1     0.6    0.6  0.01  0.938 
Residual Error  67  6975.0  104.1 
Total           68  6975.6 
Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) = 2.0 
(two tailed t test) 
-t statistic from sample (minitab output)=   0.08 
-I accept the null hypothesis because the test statistic is less than the critical value. 
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-The slope does equal zero. 
-There is not a linear relationship between snowfall and temperature. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) = 4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F=   0.01 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The explained mean square is less than or equal to the unexplained mean square. 

- The line is not statistically significant. 

Goodness of fit:  0 % 

Linear Regression Test with a 3 Year Moving Average, December Snowfall (inches) over time (year) 
from 1943-44 to 2010-2011: 

Regression Analysis: MA dec snow versus MA year  
The regression equation is 
MA dec snow = - 379 + 0.204 MA year 
Predictor     Coef  SE Coef      T      P 
Constant    -378.8    116.2  -3.26  0.002 
MA year    0.20357  0.05872   3.47  0.001 
S = 9.29541   R-Sq = 15.6%   R-Sq(adj) = 14.3% 
Analysis of Variance 
Source          DF      SS      MS      F      P 
Regression       1  1038.4  1038.4  12.02  0.001 
Residual Error  65  5616.3    86.4 
Total           66  6654.7 
 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   3.47 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
-The slope does not equal zero. 
-There is a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 
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H1: The explained mean square is greater than the unexplained mean square. 

 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F=  12.02 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
- The explained mean square is greater than the unexplained mean square. 

-The line is statistically significant. 

Goodness of fit:  15.6 % 

 Linear Regression Test with a 3 Year Moving Average, January Snowfall (inches) over time (year) 
from 1943-44 to 2010-2011: 

Regression Analysis: MA jan snow versus MA year  
The regression equation is 
MA jan snow = - 189 + 0.108 MA year 
Predictor     Coef  SE Coef      T      P 
Constant    -189.1    109.5  -1.73  0.089 
MA year    0.10813  0.05534   1.95  0.055 
S = 8.75950   R-Sq = 5.5%   R-Sq(adj) = 4.1% 
Analysis of Variance 
Source          DF       SS      MS     F      P 
Regression       1   292.97  292.97  3.82  0.055 
Residual Error  65  4987.37   76.73 
Total           66  5280.34 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   1.95 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
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-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 3.82 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  5.5 % 

Linear Regression Test with a 3 Year Moving Average, February Snowfall (inches) over time (year) 
from 1943-44 to 2010-2011: 

Regression Analysis: MA feb snow versus MA year  
The regression equation is 
MA feb snow = - 10.5 + 0.0143 MA year 
Predictor     Coef  SE Coef      T      P 
Constant    -10.45    78.39  -0.13  0.894 
MA year    0.01429  0.03963   0.36  0.720 
S = 6.27326   R-Sq = 0.2%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1     5.12   5.12  0.13  0.720 
Residual Error  65  2558.00  39.35 
Total           66  2563.12 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.36 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.13 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  0.2 % 
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Linear Regression Test with a 3 Year Moving Average, Snowfall (inches) over time (year) from 1943-
44 to 2010-2011: 

Regression Analysis: MA snowfall versus MA year  
The regression equation is 
MA snowfall = - 578 + 0.326 MA year 
Predictor    Coef  SE Coef      T      P 
Constant   -578.4    201.8  -2.87  0.006 
MA year    0.3260   0.1020   3.20  0.002 
S = 16.1481   R-Sq = 13.6%   R-Sq(adj) = 12.2% 
Analysis of Variance 
Source          DF       SS      MS      F      P 
Regression       1   2662.9  2662.9  10.21  0.002 
Residual Error  65  16949.5   260.8 
Total           66  19612.4 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   3.20 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
-The slope does not equal zero. 
-There is a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 10.21 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
- The explained mean square is greater than the unexplained mean square. 

-The line is statistically significant. 

Goodness of fit:  13.6 % 

Linear Regression Test with a 3 Year Moving Average, December Temps (F) over time (year) from 
1943-44 to 2010-2011: 

Regression Analysis: MA dec temps versus MA year  
The regression equation is 
MA dec temps = - 23.8 + 0.0270 MA year 
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Predictor     Coef  SE Coef      T      P 
Constant    -23.77    24.94  -0.95  0.344 
MA year    0.02700  0.01261   2.14  0.036 
S = 1.99545   R-Sq = 6.6%   R-Sq(adj) = 5.2% 
Analysis of Variance 
Source          DF       SS      MS     F      P 
Regression       1   18.269  18.269  4.59  0.036 
Residual Error  65  258.817   3.982 
Total           66  277.086 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   2.14 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
-The slope does not equal zero. 
-There is a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 4.59 
-I reject the null hypothesis because the test statistic is greater than the critical value. 
- The explained mean square is greater than the unexplained mean square. 

-The line is statistically significant. 

Goodness of fit:  6.6 % 

Linear Regression Test with a 3 Year Moving Average, January Temps (F) over time (year) from 
1943-44 to 2010-2011: 

Regression Analysis: MA jan temps versus MA year  
The regression equation is 
MA jan temps = 18.1 + 0.0033 MA year 
Predictor     Coef  SE Coef     T      P 
Constant     18.11    38.62  0.47  0.641 
MA year    0.00332  0.01952  0.17  0.865 
S = 3.09023   R-Sq = 0.0%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    0.277  0.277  0.03  0.865 
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Residual Error  65  620.719  9.550 
Total           66  620.996 
Unusual Observations 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.17 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.03 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  0.0 % 

Linear Regression Test with a 3 Year Moving Average, February Temps (F) over time (year) from 
1943-44 to 2010-2011: 

Regression Analysis: MAfebtempsagain versus MA year  
The regression equation is 
MAfebtempsagain = 17.2 + 0.0043 MA year 
 
Predictor     Coef  SE Coef     T      P 
Constant     17.20    37.04  0.46  0.644 
MA year    0.00428  0.01873  0.23  0.820 
S = 2.96431   R-Sq = 0.1%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    0.460  0.460  0.05  0.820 
Residual Error  65  571.162  8.787 
Total           66  571.622 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 
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H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.46 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.05 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  0.0 % 

Linear Regression Test with a 3 Year Moving Average,  Temps (F) over time (year) from 1943-44 to 
2010-2011: 

Regression Analysis: MA temps versus MA year  
The regression equation is 
MA temps = 3.8 + 0.0115 MA year 
Predictor     Coef  SE Coef     T      P 
Constant      3.85    25.07  0.15  0.878 
MA year    0.01154  0.01267  0.91  0.366 
S = 2.00587   R-Sq = 1.3%   R-Sq(adj) = 0.0% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    3.335  3.335  0.83  0.366 
Residual Error  65  261.529  4.024 
Total           66  264.864 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
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(two tailed t test) 
-t statistic from sample (minitab output):  T=   0.91 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between temperature and time. 

F-Test: 

Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 0.83 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  1.3% 

Linear Regression Test, Lake Erie ice over time (year) from 1943-44 to 2010-2011: 

Regression Analysis: Ice Date_2 versus Year_1_1   
Winter ice date over time 1944-2011  
The regression equation is 
Ice Date_2 = - 304 + 0.162 Year_1_1 
Predictor    Coef  SE Coef      T      P 
Constant   -303.9    230.3  -1.32  0.192 
Year_1_1   0.1620   0.1165   1.39  0.169 
S = 18.8490   R-Sq = 2.8%   R-Sq(adj) = 1.4% 
Analysis of Variance 
Source          DF       SS     MS     F      P 
Regression       1    687.9  687.9  1.94  0.169 
Residual Error  66  23448.9  355.3 
Total           67  24136.8 
Unusual Observations 

Linear Regression Test: 

T-Test: 

Ho: The slope = 0 

H1: The slope does not = 0 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
N= 68 
N= 68-2 
N=66 
-t critical (from the table) =  t= 2.0 
(two tailed t test) 
-t statistic from sample (minitab output):  T=   1.32 
-I accept the null hypothesis because the test statistic is less than the critical value. 
-The slope does equal zero. 
-There is not a linear relationship between lake ice date and time. 

F-Test: 
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Ho: The explained mean square is less than or equal to the unexplained mean square. 

H1: The explained mean square is greater than the unexplained mean square. 

-Significance Level (a) is = .05 
-Number of degrees of freedom (v) : 
Vn=  1 
Vd = 66 
-F critical (from the table) =  4.0 
(one tailed F test) 
-F statistic from sample (minitab output):  F= 1.94 
-I accept the null hypothesis because the test statistic is less than the critical value. 
- The explained mean square is less than or equal to the unexplained mean square. 

-The line is not statistically significant. 

Goodness of fit:  2.8% 

 

Correlations: WinterIceRanked, WinterSnowRanked  
Pearson correlation of WinterIceRanked and WinterSnowRanked = -0.339 
P-Value = 0.005 
 
The probaility of outcome (P-value) is less than .05 (alpha) so the correlation is statistically significant.  A 
correlation of 0.339 (square it), comes to about 0.1 so there is a statistically significant association but a 
weak one.  
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