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. I 

ABSTRACT 

We conducted a mesocosm experiment to determine the impact of Canada 

Goose (Branta canadensis) feces on water quality parameters. After 30 days of fecal 

additions (treatments of 2.419 g, 1.209 g and 12.090 g every 3 d) we found no 

significant impact on soluble reactive phosphorus, total phosphorus, ammonia, 

nitrate, total Kjeldahl nitrogen, chlorophyll-a, phycocyanin or turbidity for any of the 

treatment groups versus the control (no fecal addition). Nitrogen to phosphorus ratios 

were not affected by the fecal additions. Although there was no significant increase 

in chlorophyll-a concentration or phytoplankton biovolume, there was an increase in 

phytoplankton counts in the high treatment group. Phytoplankton diversity (using the 

Shannon index of diversity) was significantly decreased by the addition of goose 

feces (Hi'=0.575, H2'=0.433, t=l7.43, p<0.001, where H1' is the control and H2' is the 

12.090 g treatment). We performed a settling experiment which suggested that 

nutrients in goose feces settle to the sediment quickly, prohibiting uptake by 

phytoplankton which explains the apparent lack of impact of fecal additions on water 

quality. Since most of the nutrients in goose feces settle to the sediment, it is likely 

that the impact of the nutrients will not become evident until a mixing event occms or 

a benthic food web passes them to the organisms of the water column. 
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INTRODUCTION 

In the midst of one of the greatest periods of extinction in the history of earth, 

there are a few species that seem to be doing extremely well. The Canada Goose 

(Branta canadensis) is one such species. Populations are growing at an exponential 

rate in many areas of the Northeast (Ankney, 1996). Several subspecies of Canada 

goose reside in western New York including the Mississippi Flyway Giant (B. 

canadensis maxima), Atlantic (B. canadensis canadensis) and Southern James Bay 

(B. canadensis interior) (U.S. Fish and Wildlife Service 2003). All populations of the 

subspecies increased (between 4 and 19 percent) in the Northeast from 2002 to 2003 

except Southern James Bay Canada geese, which decreased less than 1 % (U.S. Fish 

and Wildlife Service 2003). The causes of the increase include changes in 

agricultural land use, such as the development of rice fields in Texas and Louisiana or 

cereal grains in the Midwest and northeast, which ultimately increase the amount of 

available food for geese along the flyways (Abraham and Jeffries 1997). 

With the increase in the goose population in North America, several major 

impacts on lake ecosystems have been suggested or demonstrated. These include, but 

are not limited to, greater abundance of pathogens, excess nutrients in the water 

column, nutrient stimulation of phytoplankton populations, changes in phytoplankton 

species composition, and the development of Cyanobacteria blooms and the related 

production of cyanotoxins (Pettigrew et al. 1998; Manny et al. 1975 and 1994; 

Kitchell et al. 1999; Marion et al. 1994; Harris et al. 1981; Bedard and Gauthier 

1986). Schindler (1971) demonstrated that experimental additions of phosphorus and 
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nitrogen over a period of 17 weeks caused both an increase in algal biomass and 

changes in phytoplankton community structure. Much work has recently focused on 

contribution from sources other than humans such as agriculture (Makarewicz et al. 

1990, 2002), fish (Perrson 1997), and nutrient cycling from the sediment (Rydin 

2000, Baldwin et al. 2002). The two most comprehensive studies of waterfowl as 

nutrient vectors come from Manny et al. (1975 and 1994) at Wintergreen Lake, MI, 

and a series of studies at Bosque del Apache National Wildlife Refuge, NM, most 

notably Post et al. (1998) and Kitchell et al. (1999). At Wintergreen Lake, Canada 

geese added approximately 4,400kg (dry weight) of feces per year. The geese 

contributed 69%, 29% and 70% of the total load of carbon, nitrogen and phosphorns 

to the lake, respectively (Manny et al. 1994). At Grand-Lieu, France, Marion et al. 

(1994), found much lower percentages of nitrogen (0.7 to 0.4%) and phosphorus (2.4 

to 6.6%), which were contributed by mostly European starlings (Sturnus vulgaris) 

and mallards (An.as platyrhynchos). However, unusually high pollution from 

agriculture and untreated sewage probably decreased the relative proportion of birds 

(Marion et al. 1994). At Lake 18d in Bosque del Apache, individual snow geese 

(Anser caerulescens) provided 3.15 g nitrogen per day and 0.45 g phosphorous per 

day by defecation, which amounted to about 40% of all nitrogen and 75% of all 

phosphorns addition to this system (Kitchel et al. 1999). Perhaps more imp01tant, 

different food types affected nutrient loads. Some forage had relatively low energy 

content and thus greater consumption rate, but a similar nutrient content that led to 

higher loading of nutrients to the lake system. For example, foraging on alfalfa 
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(Medicago sativa) produced feces that five times as much nitrogen and 2.6 times as 

much phosphorus to the lake system than from geese eating corn (Zea mays), and 

may have affected phytoplankton community composition (Kitchell et al. 1999). 

Several research issues and gaps exist in the literature on the impact of geese 

populations on lake ecosystems. In this study, we tested several hypotheses through 

intermediate-duration mesocosm experiments. These included: 

1. Water chemistry parameters, such as phosphorus, nitrogen and ammonia, are 

influenced by the addition of goose feces. 

The small-scale (5 m by 5 m mesh frames) experimental study by Pettigrew et al. 

(1998) revealed no long-term increase in nutrient levels after the addition of goose 

feces. In contrast, larger scale (whole system) field studies (Manny et al. 1994, Post 

et al. 1998, and Kitchell et al. 1999) suggested that geese contribute significant 

amounts of nutrients to freshwater systems. We employed methodology similar to 

Pettigrew et al. but used higher fecal loading rates based on those discussed in the 

larger scale field ~tudies. Another difference between our study and that of Pettigrew 

et al. is that we added feces regularly (every 3 d) while Pettigrew et al. added feces in 

two pulses four weeks apart. 

2: Phytoplankton biomass should increase due to phosphorus from fecal additions. 

Pettigrew et al. (1998) suggested that nutrient concentration in the water did not 

increase after feces additions because those nutrients were quickly taken up by 

phytoplankton. Pettigrew's work suggested that phytoplankton biomass should 

increase with increasing addition of goose fecal material. Similarly, Watson's 
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general work on the response of phytoplankton to phosphorus indicated that total 

phytoplankton biomass increased exponentially with log TP (Figure 1). In the 

current study, we employed the mesocosm approach to test the hypothesis that an 

increase in phytoplankton biomass should be evident after fecal addition because of 

the increased loading of phosphorus and other nurients. 

3: Phytoplankton diversity will decrease with increased total phosphorus from fecal 

additions. 

The relationship between phytoplankton species composition and total phosphorus 

(TP) concentration is presented in Figures 1 and 2. Phytoplankton taxonomic 

diversity is greatest in oligotrophic lakes and decreases with increasing 

eutrophication. In hypereutrophic lakes (approaching TP = 3.0 µg/L), phytoplankton 

were exclusively Cyanobacteria. Significant loss of phytoplankton diversity appears 

to occur when TP reaches concentrations typical of eutrophic lakes, as Cyanobacteria 

levels increase. This general pattern is consistent with other studies, however, species 

richness peaks at.a slightly greater levels in some studies (see Dodson et al., 2000). 

We tested the hypothesis that addition of goose fecal material will decrease 

phytoplankton diversity. 

4: Low N: P ratios caused by the addition of goose feces will lead to an increase in 

Cyanobacteria populations. 

At Lake 18d in the Bosque Del Apache National Wildlife Refuge, nitrogen to 

phosphorus ratios in inflow wat~r was 37: 1, while goose feces contained ratios of 8: 1 

(Post et al. 1998). In freshwater systems, where phosphorus and nitrogen can act as 
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limiting factors, changes in nutrient ratio may increase Cyanobacteria as they thrive 

in low nitrogen to phosphorus ratio conditions. By adding phosphorus and keeping 

nitrogen constant, N:P ratios decrease, driving the community towards domination by 

Cyanobacteria which thrive at N:P ratios below 29:1 (Post et al. 1998). In lakes 

with high goose population densities and therefore high rates of nutrient loading, 

nutrient ratios (especially nitrogen to phosphorus) may provide conditions 

advantageous to harmful and nuisance phytoplankton such as Cyanobacteria. We 

tested the hypothesis that addition of goose fecal material will alter N:P ratios and 

lead to Cyanobacteria blooms is tested. 

5: Increased nutrients and changes in nutrient ratios will lead to increases in toxic 

Cyanobacteria and therefore increases in cyanotoxin concentrations. 

After the deaths of 76 people in Brazil from ingestion of cyanotoxins (Carmichael et 

al. 2001) concern has developed that goose-induced changes in nutrient ratio may 

lead to Cyanobacteria blooms and production of cyanotoxins. Two cyanotoxins are 

often associated with Cyanobacteria populations. Anatoxin-a is a neurotoxic alkaloid 

produced by Anabaena flos-aquae that acts as an acetylcholine agonist, stimulating 

the nerve, and inhibiting acetylcholinesterase (James and James 1993). Microcystins 

are cyclic hepatotoxins produced mostly by the genus Microcystis. Microcystin-LR is 

a protein phosphatase (PP-1 and PP-2A) inhibitor, which leads to hepatic hemorrhage 

'(Dawson 1998). Both toxins have also impacted fish species (see Kopp and Hetesa 

2000). The logical connection between an increase in Cyanobacteria and an 

increased threat from cyanotoxins has not been investigated in the context of fecal 
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loading from geese. We monitored microcystin levels anticipating a Cyanobacteria 

bloom in mescocosms with additions of goose fecal material. 

Experimental Design 

Mesocosm Setup 

METHODS 

We placed mesocosms, modeled after Schindler et al. (1971), in pond number 

four, one of the eight experimental ponds at SUNY College at Brockport. Each 

mesocosm, constructed of Layfiat Polyethylene Tubing (Action Plastic Sales, 

Minneapolis, MN), extended from 4 cm above the water's smface and were anchored 

into the sediment (a depth of 1.8 m) by two concrete blocks (Figure 3 and 4). At both 

ends the mesocosms were framed by 1.27 cm (0.5 in.) PVC piping formed into a 

circle and attached to the tubing with duct tape. Each mesocosm was supp01ted by a 

square of 10.16 cm (4.0 in) PVC piping (Figure 5). Buoyant pipe insulation was 

attached to the PVC circle to provide further buoyancy, and the entire system was 

tethered to trees at three sides of the pond for additional stability. 

Sampling Regimen 

We took sixteen sets of samples in the morning from a small rowboat, one 

every third day (28 June 2004 to 12 August 2004) before fecal additions. Microcystin 

was measured less regularly due to mechanical difficulties with sampling equipment. 

We measured water temperature in each mesocosm using a YSI thermometer probe. 

Secchi depths were recorded before samples were taken to minimize the impact of the 
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sampling disturbance on transparency. Water samples for turbidity, conductivity, pH, 

alkalinity, nitrate-nitrogen (N03-N), ammonia (NH3), total Kjeldahl nitrogen (TKN), 

soluble reactive phosphorus (SRP), total phosphorus (TP), chlorophyll-a, 

phycocyanin, total coliform and Escherichia coli measures were taken with a vertical 

Van Dom bottle at a depth of lm. We placed Chlorophyll-a samples in opaque 

bottles. Both SRP and N03-N water samples were filtered using a Magna 0.45 µm 

nylon filter and frozen. We collected Coliform samples in sterile 50 mL centrifuge 

tubes. Phytoplankton samples were also taken with the vertical Van Dom bottle, 

preserved in 25% glutaraldehyde, and kept in the dark. Zooplankton samples were 

collected using a 12 L Schindler trap and preserved in 10% buffered formalin acetate. 

For microcystin, we used a pump to filter pond water through a Whatman 1.5 

µm glass microfibre filter until the filter clogged. We returned the filtrate to the 

appropriate mesocosm to ensure that nutrients in the water were not lost. The residue 

and the filter were placed in a 50 ml centrifuge tube. On occasions when the pump 

was not working correctly, 20 L samples were transpo1ted to the lab and filtered using 

a vacuum pump. We placed all samples on ice in a cooler for transport back to the 

lab, except for microcystin, SRP and N03-N samples, which were frozen in a cooler 

of dry ice immediately and zooplankton and phytoplankton samples which were kept 

at ambient temperature. 
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Experimental Setup 

We arranged the six mesocosms in a two-by-three pattern with PVC square 

frames attached to each other. Fecal additions were assigned to mesocosms using a 

random number generator. Two of the mesocosms received no feces (control), two 

received moderate fecal loading (50% of peak season) and two received 100% of 

peak season estimates (Figure 6 and Appendix A). After 15 d with little change in 

chlorophyll-a or TP, we changed the 50% treatments to 500% on 25 July 2004. 

Fecal Additions 

Manny et al. (1975) found that migrant geese defecated an average of 28 times 

d-1 with an average fresh and dry dropping weight of 5.56 g and 1.17 g per event, 

respectively. Kear (1963) estimated Atlantic Canada Goose dropping frequency at 92 

d-1 with an average dry weight of 1.9 g. Using the more conservative estimates of 

Manny, we calculated experimental loading in each mesocosm receiving full feces to 

be 0.806 g wet weight per day. This value was based on "typical" geese abundance 

and water volume (Table 3 and Appendix 1). Feces were collected from local 

roosting areas (e.g., Cobb's Hill Park in Rochester, NY) and analyzed for nitrate­

nitrogen, ammonia, total Kjeldahl nitrogen, soluble reactive phosphorus, total 

phosphorus, fresh weight and coliform. Fresh feces were stored in a watertight 

container and added every 3 d for 33 d (10 July 2004 to 12 August 2004) in a I liter 

slurry and mixed gently by lowering and raising a small desk fan blade. 
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Sample Analysis 

Water Chemistry Analysis 

See Table 4 for parameters measured and associated methodology. 

Coliform Analysis 

We filtered Coliform samples through a 0.45 µm sterile Millipore filter and 

plated them on absorbent pads with m-coliblue24 broth and incubated for 24 h at 36° 

C. Total coliform colonies appeared red while E. coli colonies appeared blue. We 

diluted most samples to 20% in order to increase colony resolution and counted 

colonies using a stereo microscope (Millipore Corporation, 1991). 

Microcystin Analysis 

We sonicated the frozen microcystin samples in 15 ml 50% methanol for five 

20 second pulses. Samples were centrifuged and the supernatant was filtered through 

a type A/E glass fiber filter. We used protein phosphatase inhibition assay to 

determine concentration of rnicrocystin in the filtrate (Carmichael and An, 1999). 

Plankton Analysis 

We identified and quantified phytoplankton divisions on a Wild inverted 

microscope using procedures described in section 10200 of Standard Methods for the 

Examination of Water and Wastewater, 20th Edition and various algae keys (Prescott 

1962, Ward and Whipple 1918, Prescott 1954, Dillard 1999, Wehr and Sheath Eds. 

2003). 
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Statistical Analysis 

For each parameter, we performed one-way ANOVAs on data for the first, 

middle and final four collection days in the experiment. We used the first four days 

to establish homogeneity between mesocosm tubes, the middle four to determine 

whether there was any impact of the 50% treatment and the final four to assess 

impact, if any, analysis of the 100% and 500% (increased from 50% early in the 

experiment) treatments. In each of these analyses, we considered each mesocosm 

individually and did not average values for identical treatments (n=7). When 

ANOV A indicated significant differences, we performed Tukey Multiple Comparison 

tests for the treatments. 

We also plotted each parameter against date with error bars representing two 

times the standard error of the mean of the seven data points (pond, two 0%, two 

100% and two 501500% treatments) for that date (Figures 7 to 20). Five parameters 

were also plotted against feces added (proportional to total phosphorus added - 1 g 

feces contains 3.147 mg total phosphorus) (Figures 21 to 25). In these plots, only 

those treatments that received feces are included. 

In order to examine the impact of seasonal fluctuations in water chemistry 

parameters, we performed multiple regression analysis for feces added and date. 

We analyzed the microcystin data using a Kruskal-Wallis test perfo1med 

between the all four treatments (including the pond) and the three mesocosm-based 

treatments alone. Using a paired t-test, we looked for differences between 

microcystin levels at the beginning and end of the experiment. 
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We used the Shannon index of diversity (H' = -~pilog(pi)) to measure diversity 

in each sample and the samples were compared using a two sample t-test proposed by 

Hutcheson (Zar 1999). In order to compare the proportions cyanobacteria to the total 

phytoplankton, we used a hypothesis test about the difference between two 

proportions. 

RESULTS 

All nitrate-nitrogen measurements were non-detectable. Before the 

experiment started, only alkalinity (p=0.049), pH (p<0.001) and total coliform 

(p<0.001) were significantly different among mesocosms and the pond (Table 5). A 

Tukey Multiple Comparisons (Table 6) indicated significant differences in alkalinity 

between the pond and the 50% treatment (p=0.035) and in pH and coliform levels 

between the pond and the three treatments (p<0.001). 

For the middle period of the experiment (7/19/05 to 7/28/05), a significant 

difference (p=0.050) in alkalinity (Table 7) existed among treatments and Secchi 

depth and chlorophyll-a approached significance. However, a Tukey Multiple 

Comparison (Table 8) found no significant differences between individual treatments. 

For the final four dates (Table 9), significant differences were found for SRP 

(p=0.040), turbidity (p=0.019), secchi depth (p=0.001) and total coliform (p=0.045). 

Tukey Multiple Comparisons (Table 10) revealed significant differences for turbidity 

between the pond and 100% treatment (p=0.022; 100% treatment is higher) and for 
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Secci depth between the pond and the all treatments (p=0.008 for 0% treatment, pond 

had a greater average depth; p=0.038 for 100% treatment, pond had a greater average 

depth; p<0.001 for the 500% treatment, pond had a greater average depth). 

Therefore, water clarity was decreased and the amount of suspended organic material 

was increased by the addition of goose fecal material. 

We plotted data for each water chemistry parameter against time for all 

sample dates for all treatments (Figures 7 to 20). These data demonstrate that 

significant differences did not occur among the treatments during periods not 

considered by ANOV A. For example, Chlorophyll-a (Figure 10) appears to be high 

at the beginning of the experiment, but later settled to within the error range, almost 

as soon as the 50% level was increased to 500%. All other fluctuations above and 

below the error range were erratic and short-lived. Phycocyanin (Figure 13) 

increased throughout the experiment for all treatments, but there was very little 

distinction between treatments. The Secchi depth (Figure 15) for the pond was 

consistently greater than the treatment groups. Total phosphorus (Figure 20) was 

highest for all treatments shortly before fecal additions began (7/10), and took about 

12 d to decrease, and was relatively constant for the last 20 d. All other parameters 

failed to show any patterns, but many seemed to follow a parabolic shape, beginning 

high, then decreasing until the middle of the experiment, then increasing again at the 

end. 

Initial plots of the five parameters against feces added (Figures 21 to 25) may 

be misleading since normal seasonal changes (from June to August) were not taken 
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into account. Multiple regression analysis (Table 11) showed that there was a 

significant negative relationship (B=-76.371, t=3.960, p<0.001) between date and 

total phosphorus (as expected based on Figure 20). Phycocyanin exhibited a 

significant positive relationship to date (B=2.621, t=4.667, p<0.001). Although the 

scatter plot of phycocyanin versus feces added (Figure 22) seemed to indicate a 

relationship between feces added and phycocyanin, the multiple regression analysis 

indicated that date is the significant factor in the relationship. Since feces were added 

regularly every three days, the relationship between feces added and phycocyanin 

appeared to be significant when in fact it was only an artifact. Feces added had a 

marginally significant impact on Secchi depth, although the slope was near zero 

(B=5.07E-03, t=2.016, p=0.050, Table 11). Total Coliform was dependent on date 

(8=93.104, t=3.516, p=0.001) and feces added (B=-33.379, t=-2.547, p=0.014). 

Total Kjeldahl nitrogen was significantly impacted by both date (B=-18.283, t=-

2.877, p=0.006) and feces added (B=8.418, t=2.676, p=0.010), but again with 

opposite slopes. Finally, feces added had a significant negative impact on turbidity 

(B=-0.116, t=-3.028, p=0.004). 

Microcystin 

Microcystin samples collected on the last two sampling days of the 

experiment were analyzed. The average concentration for all treatments was 0.025 

mg/L (0.004, 0.017, 0.053 and 0.015 for the pond, 0%, 501500% and 100% treatments 

respectively). A Kruskal-Wallis test determined that there was no significant 

difference among the four treatments (Chi-square=5.742, df=3 p=0.125) or the three 
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mesocosm-based treatments (Chi-square=l.417, df=2, p=0.492). Fmthermore, a 

paired t-test found no significant difference between samples at the beginning and end 

of the experiment. (t=0.198, df=12, p=0.846). Because there were no significant 

differences, microcystin samples collected during the middle of the experiment were 

not analyzed. 

Upon visual examination of the mesocosms, there were no obvious 

differences among the six treatments. 

Phytoplankton Diversity 

We determined phytoplankton diversity on for the final day of the experiment 

in the pond and 501500% treatments (Table 12 and Figures 26 and 27). The 50/500% 

treatment had an average count (cells/mL) of nearly three times the average from the 

control treatment (Figure 26). Much of that difference was due to an increased 

presence of chrysophytes and unidentified flagellates. The biovolume (µm3 /mL) of 

each treatment actually showed the opposite: the control had a greater volume than 

the 50/500% treatment (Figure 27) with py1Tophytes greater in the control and 

chrysophytes again greater in the 50/500% treatments. Overall diversity, based on 

phytoplankton counts, (Shannon index of diversity) was significantly higher in the 

control group compared to the 50/500% treatment (Hcontroi'=0.575, Hsotsoo%'=0.433, 

t=l7.43, p<0.001). We did not determine phytoplankton diversity for the 100% 

treatment. 
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DISCUSSION 

We found that the fecal additions had almost no impact on water quality. The 

only parameters that were found to be significantly different ny ANOVA from the 

pond after the fecal additions were Secchi depth and tmbidity. Multiple regression 

analysis found that date was the best predictor of many of the water chemistry 

parameters. Phytoplankton diversity and biomass (chlorophyll-a) decreased with 

increased fecal loading. Cyanobacteria as a proportion of the total phytoplankton 

community did increase with fecal additions, but microcystin was not impacted. 

At least two schools of thought exist about the impact of waterfowl on water 

quality. The first, the impact school, based on the work of Manny et al. (1975 and 

1994), Hanis et al. (1981), Post et al. (1998) and Marion et al. (1994), is that 

waterfowl contribute significant nutrients in some freshwater systems. Each study 

estimates the percent contribution of nitrogen and phosphorus by birds to reach-as 

high as 40% of nitrogen and 75% of phosphorus input to a lake. Accordingly, this 

level of fecal loading must lead to changes in water quality parameters, nutrient 

ratios, phytoplankton abundance and species diversity. The second view, the non­

impact school, suggests that there is little or no impact from waterfowl fecal loading 

(Pettigrew et al. (1998) and Bedard et al. (1980)). Support for this hypothesis results 

from field-based experimental evidence. In this study, we attempted to bridge the gap 

between the two schools of thought by using fecal loading rates derived from the 

work of the "impact school" while employing an experimental design similar to that 

of the "non-impact school". 
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My results support the "non-impact" school of thought. Waterfowl fecal 

loading had little or no impact on water quality or phytoplankton. Over 213 mg of 

phosphorus was added to the 50/500% mesocosms during the experiment. Ambient 

levels of P as fecal material should have reached 262. 7 µg P/L, but this was not 

observed. Total phosphorus levels never exceeded 156.4 µg/L (other than anomalous 

high levels before additions began) and ended at 30.3 µg/L in mesocosm 2 and 43.0 

µg/L in mesocosm 6. Fecal material was added as slurry from the surface and mixed 

with a suspended fan blade. No tears or rips of the mesocosm were observed. 

Therefore, the added phosphorus must have either sunk through the mesocosm to the 

bottom or been taken up and passed through aquatic food web. 

Despite the slurry form of the fecal additions and mixing with a fan blade, it is 

likely that most of the nutrients and organic material and nutrients in the mesocosm 

simply sank to the bottom of the pond. A laboratory settling experiment suppo1ted 

this suggestion. Fecal slurry, as created for the field experiments, was added to a 

column of water (1900 ml, approximately 500 mm) and turbidity measured over 3 

days. Turbidity decreased exponentially (y = 4.7491e·0·
00781, R2=0.9706) with time in 

hours (Figure 28). In fact, within 100 min of the fecal addition, turbidity decreased 

from 101 NTU to 4.84 NTU. Unfortunately, nutrient loading into the sediment at the 

bottom of the mesocosms was not measured. It important to note that the method of 

fecal loading by slurry used in this study much was more likely to dissolve in water 

than "fecal" inputs from a goose which would likely sink. 
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Pettigrew et al. (1998) also concluded that phosphorus and nitrogen did not 

remain in the water column after nutrient additions. Nutrients were assimilated by 

plankton, adsorbed into the sediment or denitrified (nitrogen only). It is likely 

nutrient concentration in sediments would be similar in all mesocosms, and therefore 

difficult to differentiate, since the bottom of the pond was largely decaying plant 

material (similar to the contents of the feces). If the fate of most of the fecal nutrients 

is to end up in the sediment, the impact of those nutrients on water quality may not be 

manifested until a mixing event occurs. Although the mesocosms were gently mixed 

with a fan blade with each addition of slurry, this was probably not enough to free 

nutrients from the sediment. Nutrients may have also passed quickly through the 

food web and ended up in zooplankton communities, but there is no evidence for this 

in either water chemistry data or phytoplankton community data. 

The differences in water chemistry parameters (Secchi depth and turbidity) 

among the treatments were likely artifacts of the mesocosm approach. The Secchi 

depth (Figure 15) for the pond was consistently greater than the treatment groups, 

most likely because the mesocosms, although clear plastic, blocked some sunlight. 

The explanation for greater pond secchi depth is partially supported by the turbidity 

measurements (Figure 16) which were highly variable, but did not show consistently 

higher measurements in the pond. Since the pond and the control mesocosm were 

significantly different according to a Tukey Multiple Comparison test, the lack of 

water flow or sunlight is the most plausible reason for the observed differences. 
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Phytoplankton diversity did decrease with the increased total phosphorus load 

from fecal additions (Table 12). We predicted that phytoplankton biomass would 

increase with increased total phosphorus from fecal loading as fecal-produced 

phosphorus was taken up by phytoplankton. However, the experimental results 

indicate that chlorophyll-a actually decreased (Figures 10 and 21) suggesting that 

phytoplankton are not a sink for phosphorus. 

The expectation that cyanobacteria would dominate the community in the 

501500% treatments was not realized as the NIP ratio in experimental columns did not 

change significantly (Figure 29). Average cyanobacteria counts (cells/mL) were 

significantly higher (z=l 1.12, p<0.001) as a proportion of total phytoplankton in the 

501500% treatments while biovolume was actually less (z=25.02, p<0.001) (Table 

12). In fact, no cyanobacteria were found in mesocosm 6 (one of the 50/500% 

treatments). It follows that no increase in cyantoxins was observed. 

Much of the work of the "impact school" (Manny et al. 1974 and 1994, 

Scherer et al. 1995, Kear 1963) was based on large lakes and bays and may not 

provide an accurate measure of the per capita impact of geese on smaller ponds with 

reduced volume and flow rates. Those studies never claimed an changes in water 

chemistry or phytoplankton community from nutrients additions, simply that the 

nutrients were being added in significant amounts even in large lakes. 
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Future Research 

The logical follow-up to this study is to examine the impact of feces on the 

sediment. The first question to be addressed is whether or not the nutrients added in 

feces can be accounted for in the sediment. This type of study may be difficult in 

ponds since sediment levels of nutrients are likely very high. Stable isotope studies 

would allow researchers to track the path of specific nuuients. If nutrients are ending 

up in the sediment, then the next question to examine is what happens to· those 

nutrients during a mixing event. If the nutrients are released into the water column 

then some of the original concerns discussed in this study may again be relevant. 

Finally, if there is a significant amount of loading to the sediment, then is there a 

change in the sediment community and the detritus food web? These bottom-up 

(both trophic and depth) effects may lead to significant changes in water chemistry 

and plankton community structure. 

CONCLUSIONS 

In the sho1t term nutrient loading by geese seems to have no measurable impact on 

water quality in the mesocosms, but the limited impact on the phytoplankton 

community is difficult to explain. We suggest that the bulk of the nutrients contained 

in the feces simply sank to the sediment where they either became part of a benthic 

·detritus food web or cycled back into the water column during a mixing event. 

Because Cyanobacteria populations were unaffected by fecal loading, we therefore 

observed no increase in cyanotoxin concentrations in the high u·eatment groups. 
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Table 1: Relative proportions of nutrient loading to lakes from various sources~ omits 
nitrogen fixation and groundwater flow (from Post et al. 1998). 

Nutrient Loading Source % Nitrogen % Phosphorus 
Surface Flow 59 25 
Atmospheric <1 0 

Geese 40 75 

Table 2: Trophic status of lakes based on total phosphorus concentration (Watson et 
al. 1997). 

Tro hie Status TP 
Oligotrophic 
Mesotrophic 

Eu trophic 
H ypereutrophic 

Table 3. Goose fecal loading rates from four studies (geese m-2 and m-3 are the 
number of geese per square meter and cubic meter in each study). 

Study Manny Marion Oliver Post 
(1975) (1994) (1998) (1998) 

Water Body Wintergreen Lake Grand- Okefenokee Bosque del 
Lake Lieu (France) ApacheNWR 

#of Geese 2100 1,728,300 (all 8000 40,000 lesser 
birds) & snow geese 

Area (m"') 150,000 63,000,000 1.8 x 10~ 4,940,000 
Volume (mJ) 350,239 ND ND ND 
Geese m-" 0.014 0.027 4.4 x 10-0 8.1x10-J 
Geese m-) 6.0 x 10-J ND ND ND 
DropJ>ing mass 2.18 4.20 6.8 x 10-4 1.26 
(g m-2 d-1) 

Droprin?, mass 0.934 ND ND ND 
(gm- d-) 
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Table 4. Methodology for water chemistry analysis (Wetzel and Likens 2000, 
American Public Health Association et al. 1998). 

Parameter Method Notes 
Chlorophyll-a See Wetzel and Likens, 2000; Turner Analyzed day of sample 

Model 111 Fluorometer 
Phycocyanin Turner TD-700 Fluorometer 
Conductivity YSI Model 32 conductance meter Analyzed day of sample 
Alkalinity See Wetzel and Likens, 2000; Analyzed day of sample 

Titration to pH 4.5 
pH Beckman <l>pH meter and AccuTupH Analyzed day of sample 

probe 
Turbidity Micro 100 Turbidimeter Analyzed day of sample 
Ammonia Orion model 95-12 has ammonia Analyzed within 3 days of 

sensing electrode sample 
TKN EPA Method 351.2 (Colorometric, Technicon Autoanalyzer 

Semi-Automated Block Digester, (within 20 days) 
AAII). 

N03- See Standard Methods: cadmium Technicon Autoanalyzer 
reduction method - 4500-N03- F.) (within 20 days) 

SRP See Standard Methods: automated Technicon Autoanalyzer 
ascorbic acid method 4500-P F. (within 20 days) 

TP See Standard Methods: ascorbic acid Technicon Autoanalyzer 
method with persulfate digestion - (within 20 days) 
4500-P F. and 4500-P B.5 
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Table S. ANOV A for averages over first four sampling dates (06/28/05 - 07 /07 /05) 
comparing four treatments for various parameters (listed above). 

Sum of Squares 
SRP Between Groups 163.181 

Within Groups 736.386 
Total 899.567 

TP Between Groups 163.181 
Within Groups 736.386 

Total 899.567 
NH3a Between Groups .263 

Within Groups 1.924 
Total 2.187 

N03 Between Groups .000 
Within Groups .000 

Total .000 
TKN Between Groups 571208.929 

Within Groups 1615162.500 
Total 2186371.429 

CHLA Between Groups 394.341 
Within Groups 1998.304 

Total 2392.644 
PHYC Between Groups 57.292 

Within Groups 1448.377 
Total 1505.670 

Turbidity° Between Groups 6 1.903 

Within Groups 494.597 
Total 556.500 

SEC CHI Between Groups .095 
Within Groups .554 

Total .650 
Alkalinit/ Between Groups 126.713 

Within Groups 335.523 
. Total 462.236 

pHo Between Groups 1.071 

Within Groups .345 
Total 1.416 

COLIFORM Between Groups 4511747.607 
Within Groups 1470785.250 

Total 5982532.857 

astarts 7 /7 and continues for 4 sample dates 
bStarts 7 /4 and continues for 4 sample dates 
0Starts 7 /I and continues for 4 sample dates 

27 

df Mean Square F Sig. 
3 54.394 1.773 .179 

24 30.683 
27 
3 54.394 1.773 .179 

24 30.683 
27 
3 .088 1.094 .371 
24 .080 
27 
3 .000 

24 .000 
27 
3 190402.976 2.829 .060 

24 67298.438 
27 
3 131.447 1.579 .220 

24 83.263 
27 
3 19.097 .316 .813 
24 60.349 
27 
3 20.634 1.001 .409 

24 20.608 
27 
3 .032 l.374 .275 
24 .023 
27 
3 42.238 3.021 .049 
24 13.980 
27 
3 .357 24.824 .ooo 

24 .014 
27 
3 1503915.869 24.541 .ooo 
24 61282.719 
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Table 6. Tu.key Multiple Compaiison Tests for averages over first four sampling 
dates (06/28/05 - 07 /07 /05) comparing four treatments for various parameters. 
Significant differences are bold. 

Mean Diff. 
(1-J) 

Dependent (I) TREATMENT (J) TREATMENT 
Variable 

Alkalinity• 0% 50% 1.4225 
100% -1.3312 
Pond -5.2713 

50% 0% -1.4225 
100% -2.7537 
Pond -6.6938 

1.00% 0% 1.3312 
50% 2.7537 
Pond -3.9400 

Pond 0% 5.2713 
50% 6.6938 
100% 3.9400 

pH" 0% 50% .0400 
100% .0100 
Pond .5738 

50% 0% -.0400 
100% -.0300 
Pond .5337 

100% 0% -.0100 
50% .0300 
Pond .5637 

Pond 0% -.5738 
50% -.5337 
100% -.5637 

COLIFORM 0% 50% -23.00 
100% 77.38 
Pond -1123.38 

50% 0% 23.00 
100% 100.38 
Pond -1100.38 

100% 0% -77.38 
50% -100.38 
Pond -1200.75 

Pond 0% 1123.38 
50% 1100.38 
100% 1200.75 . . aThe mean difference 1s s1grnf1cant at the .05 level. 

bStarts 7/4 and continues for 4 sample dates 

28 

Std. Error Sig. 95% Confidence Interval 

Lower Bounc Upper Bound 

1.86950 .871 -3.7347 6.5797 
1.86950 .891 -6.4885 3.8260 
2.28966 .126 -11.5875 1.0450 
1.86950 .871 -6.5797 3.7347 
1.86950 .469 -7.9110 2.4035 
2.28966 .o35 -13.0100 -.3775 
1.86950 .891 -3.8260 6.4885 
1.86950 .469 -2.4035 7.9110 
2.28966 .335 -1 0.2563 2.3763 
2.28966 .126 -1.0450 11 .5875 
2.28966 .035 .3775 13.0100 
2.28966 .335 -2.3763 10.2563 
.05996 .908 -.1254 .2054 
.05996 .998 -.1554 .1754 
.07344 .000 .3712 .7763 
.05996 .908 -.2054 .1254 
.05996 .958 -.1954 .1354 
.07344 .000 .3312 .7363 
.05996 .998 -.1754 .1554 
.05996 .958 -.1354 .1954 
:07344 .000 .3612 .7663 
.07344 .000 -.7763 -.3712 
.07344 .000 -.7363 -.3312 
.07344 .000 -.7663 -.3612 

123.777 .998 -364.45 318.45 
123.777 .923 -264.08 418.83 
151.595 .000 -1541.57 -705.18 
123.777 .998 -318.45 364.45 
123.777 .849 -241.08 441.83 
151 .595 .000 -1518.57 -682.18 
123.777 .923 -418.83 264.08 
123.777 .849 ·441.83 241.08 
151.595 .000 -1618.94 -782.56 
151.595 .000 705.18 1541 .57 
151 .595 .000 682.18 1518.57 
151.595 .000 782.56 1618.94 



. ( 

Table 7. ANOVA for averages over middle four sampling dates (07/19/05 -
07 /28/05) comparing four treatments for various parameters. These are the last dates 
before the 50% treatment was changed to 500%. Significant differences are bold. 

Sum of Squares df Mean Square F Sig. 
SRP Between Groups 11.890 3 3.963 .440 .727 

Within Groups 2 16.300 24 9.013 
Total 228.1 90 27 

TP Between Groups 1466.492 3 488.831 .080 .970 
Within Groups 147264.583 24 6136.024 

Total 148731.074 27 
NH3 Between Groups .041 3 .014 .159 .923 

Within Groups 2.068 24 .086 
Total 2.109 27 

N03 Between Groups .000 3 .000 .816 .498 
Within Groups .000 24 .000 

Total .000 27 
TKN Between Groups 84060.714 3 28020.238 .274 .844 

Within Groups 2454350.000 24 102264.583 
Total 2538410.714 27 

CHLA Between Groups 962.216 3 320.739 2.451 .088 
Within Groups 3140.931 24 130.872 

Total 4103.147 27 
PHYC Between Groups 259.392 3 86.464 .673 .577 

Within Groups 3084.838 24 128.535 
Total 3344.230 27 

TURBID IT Between Groups 51.524 3 17.175 1.955 .148 
Within Groups 210.841 24 8.785 

Total 262.365 27 
SEC CHI Between Groups .474 3 .158 2.732 .066 

Within Groups l.388 24 .058 
Total J.862 27 

ALK Between Groups 97.676 3 32.559 3.000 .050 
Within Groups 260.460 24 10.853 

Total 358.136 27 
PH Between Groups .041 3 .014 .270 .846 

Within Groups 1.216 24 .051 
Total 1.257 27 

COLIFORM Between Groups 1028635.714 3 342878.571 .913 .449 
Within Groups 9011775.000 24 375490.625 

Total 10040410.714 27 

29 



Table 8. Tukey Multiple Comparison for averages over middle four sampling dates 
(07/19/05 - 07/28/05) comparing four treatments for various parameters. These are 
the last dates before the 50% treatment was changed to 500%. 

MeanDiff. Std. En-or Sig. 95% Confidence 
(1-J) Interval 

Dependent (I) (J) Lower Upper 
Variable TREATMENT TREATMENT Bound Bound 

ALK 0% 50% 2.2350 1.64716 .537 -2.3089 6.7789 
100% -.3837 1.64716 .995 -4.9276 4.1601 
Pond 4.9937 2.01735 .090 -.5713 10.5588 

50% 0% -2.2350 1.64716 .537 -6.7789 2.3089 
100% -2.6187 l.647 J 6 .403 -7.1626 1.9251 
Pond 2.7587 2.01735 .531 -2.8063 8.3238 

100% 0% .3837 1.64716 .995 -4.1601 4.9276 
50% 2.6187 1.64716 .403 -1.9251 7.1626 
Pond 5.3775 2.01735 .061 -.1876 10.9426 

Pond 0% -4.9937 2.01735 .090 -10.5588 .5713 
50% -2.7587 2.01735 .531 -8.3238 2.8063 
100% -5.3775 2.01735 .061 - 10.9426 .1876 
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Table 9. ANOV A for averages over final four sampling dates (08/03/05 - 08112/05) 
comparing four treatments for various parameters. Significant differences are bold. 

Sum of Squares df Mean Square F Sig. 
SRP Between Groups 8.720 3 2.907 3.228 .040 

Within Groups 21.610 24 .900 
Total 30.330 27 

TP Between Groups !08.402 3 36.134 .897 .457 
Within Groups 967.132 24 40.297 

Total 1075.534 27 
NH3 Between Groups .001 3 .000 .214 .886 

Within Groups .040 24 .002 
Total .041 27 

N03 Between Groups .001 3 .000 .267 .848 
Within Groups .028 24 .OOL 

Total .028 27 
TKN Between Groups 138096.429 3 46032.143 .388 .763 

Within Groups 285 IOOO.OOO 24 118791.667 
Total 2989096.429 27 

CHLA Between Groups 3.581 3 L.194 .074 .974 
Within Groups 388.806 24 16.200 

Total 392.387 27 
PHYC Between Groups 191.626 3 63.875 .038 .990 

Within Groups 40246.901 24 1676.954 
Total 40438.527 27 

TURBIDITY Between Groups 50.117 3 16.706 4.027 .019 
Within Groups 99.554 24 4.148 

Total 149.671 27 
SECCHI Between Groups .989 3 .330 7.971 .001 

Within Groups .992 24 .041 
Total 1.981 27 

ALKALINITY Between Groups 817.552 3 272.517 .635 .600 
Within Groups 10306.059 24 429.419 

Total 11123.611 27 
PH Between Groups .056 3 .019 1.335 .286 

Within Groups .333 24 .014 
Total .388 27 

COLIFORM Between Groups 16246546.429 3 5415515 .476 3.112 .045 
Within Groups 41771525.000 24 L 740480.208 

Total 58018071.429 27 
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Table 10. Tukey Multiple Comparison for averages over final four sampling dates 
(08/03/05 - '08/12/05) comparing four treatments for various parameters. Significant 
differences are bold. 

Mean Diff. (1-J) Std. Error Sig. 95% Con. Interval 

Dependent (I) (J) Lower Bound Upper Bound 
Variable TREATMENT TREATMENT 

SRP 0% 500% -. (250 .47445 .993 -1.4338 l.1838 
100% -1.1125 .47445 .116 -2.4213 .1963 
Pond -1.3125 .58108 .136 -2.9155 .2905 

500% 0% .1250 .47445 .993 -1.(838 1.4338 
100% -.9875 .47445 .188 -2.2963 .3213 
Pond -1.J875 .58l08 .200 -2.7905 .4155 

100% 0% l.l 125 .47445 .116 -.1963 2.4213 
500% .9875 .47445 .188 -.3213 2.2963 
Pond -.2000 .58108 .986 -1.8030 1.4030 

Pond 0% 1.3125 .58108 .1 36 -.2905 2.9155 
500% I.I 875 .58108 .200 -.4155 2.7905 
100% .2000 .58108 .986 -1.4030 l.8030 

TURBIDITY 0% 500% ,.1613 1.01834 .999 -2.6480 2.9705 
100% -2.3862 1.01834 .I 16 -5.1955 .4230 
Pond 1.5213 1.24721 .621 -1.9193 4.9618 

500% 0% -.1613 I.01834 .999 -2.9705 2.6480 
100% -2.5475 1.01834 .085 -5.3567 .2617 
Pond 1.3600 1.24721 .699 -2.0806 4.8006 

100% 0% 2.3862 1.01834 .ll6 -.4230 5.1955 
500% 2.5475 1.01834 .085 -.2617 5.3567 
Pond 3.9075 1.24721 .022 .4669 7.3481 

Pond 0% -1.5213 1.24721 .621 -4.9618 1.9193 
500% -1.3600 1.2472 1 .699 -4.8006 2.0806 
100% -3.9075 1.24721 .022 -7.3481 -.4669 

SECCHI 0% 500% -.0850 .10168 .837 -.3655 .1955 
100% .1563 .10168 .432 -.1242 .4367 
Pond -.4437 .12453 .008 -.7873 -.1002 

500% 0% .0850 .10168 .837 -.1955 .3655 
100% .2412 .10168 .110 -.0392 .5217 
Pond -.3587 .12453 ,038 -.7023 -.0152 

100% 0% -. 1563 .10168 .432 -.4367 .1242 
500% -.2412 .10168 .110 -.5217 .0392 
Pond -.6000 .12453 .000 -.9435 -.2565 

Pond 0% .4437 .12453 .008 .1002 .7873 
500% .3587 .12453 .Q38 .0152 .7023 
100% .6000 .12453 .000 .2565 .9435 

COLIFORM 0% 500% -51.25 659.636 1.000 -1870.93 1768.43 
100% -1745.00 659.636 .063 -3564.68 74.68 
Pond -228.75 807.886 .992 -2457.39 1999.89 

500% 0% 51.25 659.636 1.000 -1768.43 1870.93 
100% -1693.75 659.636 .074 -3513.43 125.93 
Pond -177.50 807.886 .996 -2406.14 2051.14 

100% 0% 1745.00 659.636 .063 -74.68 3564.68 
500% 1693.75 659.636 .074 -125.93 3513.43 
Pond 1516.25 807.886 .264 -712.39 3744.89 

Pond 0% 228.75 807.886 .992 -1999.89 2457.39 
500% 177.50 807.886 .996 -2051.14 2406. 14 

- 100% -15 16.25 807.886 .264 -3744.89 712.39 .. 
* The mean drfference 1s s1gn1f1cant at .the .OS level. 
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Table 11. Multiple regression analysis for various parameters with date and feces added as regressors. Significant differences 
are bold. 

Parameter R RL F Sig. Date Date SE Date t Date Feces Feces Feces t Feces 
slope value sig, Slope SE value sig. 

Total Phos. .422 .17~ 4.884 .012 -76.371 31.408 3.960 .ooo 12.278 15.545 .790 .434 
Chlorophyll-a .442 .195 5.455 .0()8 -0.348 .272 -1.280 .207 -0.105 0.135 -.779 .440 
Phycocyanin .836 .685 52.113 .009 2.621 .562 4.667 .000 0.456 0.278 1.639 .108 

SRP .371 .138 3.602 .035 -5.72E-02 .050 -1.156 .254 -I .25E-02 0.025 -.509 .614 
Secchi depth .290 .084 2.070 .138 -9.06E-03 .005 -1.785 .081 5.Q7E-03 0.003 2.0J6 .QSO 
Tot. Coliform .468 .219 6.293 .004 93. 104 26.481 3.516 .001 -33.379 13.107 -2.547 .014 

Nitrate .160 .026 0.591 .558 4.4IE-04 .001 .556 .574 3.69E-05 0.000 .096 .924 
T.l<N .401 .16_1 4.34 .019 -18_.283 6.355 -2.877 .006 _8.418 3.416 2.676 .010 

Amqionia .385 .148 3.916 .027 -6.40E-03 .005 -1.377 .175 -7.79E-04 0.002 -.3?9 .736 
Turbidity .447 .200 5.629 .007 0.122 .077 1.577 .122 -.116 .038 -3.028 .004 
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Table 12. Phytoplanton taxa counts (cell/mL) and biovolume (µm/mL) in 
representative samples of the control and 50/500% treatments. 

Control (0% Treatment) 50/500% Treatment 
Taxa Count Biovolume Count Biovolume 

(cells/ml) (µm3/ml) (cells/ml) (µm3/ml) 
BAC 370.1 0.0 460.4 0.0 
CHL 233.8 53448.7 486.2 55185.6 
CHR 3838.9 170920.1 10934.7 601331.2 
COL 231.5 7039.6 57.2 2290.0 
CRY 210.8 23768.1 228.7 24212.9 
CYA 408.5 3393.6 473.7 1582.3 
EUG 150.8 395017.3 70.5 245085.0 
PYR 48.5 1242835.8 24.5 864887.5 
UNI 381.8 12561.2 2883.9 14667.4 
TOTALS 5874.8 1908984.4 15619.7 1809241.9 
BAC=Bacillariophyceae; CHL=Chlorophyceae, CHR=Chrysophyceae, COL= 
Colorless flagellate, CRY=Cryptophyceae, CYA=Cyanophyceae, 
EUG=Euglenophyceae, PYR=Pyrrophyceae, UNl=Unidentified flagellate 
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Figure 1. Biomass of phytoplankton groups with increasing log total phosphorus (1 = 
Total biomass; 2 = Cyanobacteria; 3 = ·Bacillariophyceae; 4 = Chlorophyta; 5 = 
Cryptophyta; 6 = Dinophyta; 7 = Chrysophyceae) (Watson et al. 1997). 
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Figure 2. Phytoplankton abundance with increasing total phosphorus (modified from 
Watson et al. 1997) 
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Figure 3. Diagram of the experimental setup at SUNY Brockport aquaculture ponds, 
Pond #4, a) aerial view, and b) cross sectional view from narrow end of pond. Pond 
volume was 880 m3

. 
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Height= 1.77 m 

Ring circumference = 2.40 m 
Ring radius = 0.382 m 
Ring area = 0.4584 m2 

Mesocosm volume= 0.811 rn3 

olyethylene tubing 

Figure 4. Mesocosm dimensions for SUNY Brockport aquaculture ponds. 
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a) 

b) 

Figure 5. Photographs of the experimental setup at SUNY Brockpo1t Aquaculture 
Ponds, Pond #4: a) view of all six mesocosrn, and b) mesocosm #1. 
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Figure 6. Mesocosm assignments and amount of fecal additions. 
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Figure 7. Alkalinity over time for three treatments and pond. Enor bars (±2 SE for 6 
mesocosms and pond) are included. Treatment percentages are based on daily 
loading of 0.806 g (from Manny 1975 and Kear 1963). 501500% began as Y2 of the 
0.806 g per day and was increased to 500% of 0.806 g per day on 28 July 2004. 
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Figure 8. Ammonia concentration over time for three treatments and pond. ElTor 
bars (±2 SE for 6 mesocosms and pond) are included. Treatment percentages are 
based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 501500% 
began as Y2 of the 0.806 g per day and was increased to 500% of 0.806 g per day on 
28 July 2004. 
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Conductivity Among Four Treatments with Error Bars(+/- 2 SE) 
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Figure 9. Conductivity over time for three treatments and pond. Enor bars (±2 SE for 
6 mesocosms and pond) are included. Treatment percentages are based on daily 
loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% began as V2 of the 
0.806 g per day and was increased to 500% of 0.806 g per day on 28 July 2004. 
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Chlorophyll-a Among Four Treatments with Error Bars (+/- 2 SE) 
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Figure 10. Chlorophyll-a concentration over time for three treatments and pond. Error 
bars (±2 SE for 6 mesocosms and pond) are included. Treatment percentages are based 
on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% began as Y2 of 
the 0.806 g per day and was increased to 500% of 0.806 g per day on 28 July 2004. 
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Figure 11. Escherichia coli abundance over time for three treatments and pond. 
EITor bars (±2 SE for 6 mesocosms and pond) are included. Treatment percentages 
are based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% 
began as Y2 of.the 0.806 g per day and was increased to 500% of 0.806 g per day on 
28 July 2004. 
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Figure 12. Nitrate concentration over time for three treatments and pond. Eirnr 
bars (±2 SE for 6 mesocosms and pond) are included. Treatment percentages are 
based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% 
began as Y2 of the 0.806 g per day and was increased to 500% of 0.806 g per day 
on 28 July 2004. 
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Phycocyanin Among Four Treatments with Error Bars(+/- 2 SE) 
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Figure 13. Log Phycocyanin concentration over time for three treatments and pond. 
Error bars (±2 SE for 6 mesocosms and pond) are included. Treatment percentages 
are based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% 
began as ~ of the 0.806 g per day and was increased to 500% of 0.806 g per day on 
28 July 2004. 
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pH Among Four Treatments with Error Bars(+/- 2 SE) 
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Figure 14. pH over time for three treatments and pond. ElTor bars (±2 SE for 6 
mesocosms and pond) are included. Treatment percentages are based on daily loading 
of 0.806 g (from Manny 1975 and Kear 1963). 501500% began as Y2 of the 0.806 g per 
day and was increased to 500% of 0.806 g per day on 28 July 2004. 
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Figure 15. Secchi Depth over time for three treatments and pond. Enor bars 
(±2 SE for 6 mesocosms and pond) are included. Treatment percentages are 
based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 501500% 
began as 1h of the 0.806 g per day and was increased to 500% of 0.806 g per day 
on 28 July 2004. 
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Figure 16. Turbidity over time for three treatments and pond. Error bars (±2 SE 
for 6 mesocosms and pond) are included. Treatment percentages are based on 
daily loading of 0.806 g (from Manny 1975 and Kear 1963). 50/500% began as 1h 
of the 0.806 g per day and was increased to 500% of 0.806 g per day on 28 July 
2004. 
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Total Coliform Among Four Treatments with Error Bars (+/- 2 SE) 
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Figure 17. Total Coliform over time for three treatments and pond. Error bars 
(±2 SE for 6 mesocosms and pond) are included. Treatment percentages are 
based on daily loading of 0.806 g (from Manny 1975 and Kear 1963). 
501500% began as Y2 of the 0.806 g per day and was increased to 500% of 
0.806 g per day on 28 July 2004. 
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Figure 18. Soluble reactive phosphorus concentration over time for three 
treatments and pond. Error bars (±2 SE for 6 mesocosms and pond) are 
included. Treatment percentages are based on daily loading of 0.806 g (from 
Manny 1975 and Kear 1963). 50/500% began as Yi of the 0.806 g per day 
and was increased to 500% of 0.806 g per day on 28 July 2004. 
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Figure 19. Total Kjeldahl Nitrogen concentration over time for three treatments and 
pond. Error bars (±2 SE for 6 mesocosms and pond) are included. Treatment 
percentages are based on daily loading of 0.806 g (from Manny 1975 and Kear 
1963). 50/500% began as Y2 of the 0.806 g per day and was increased to 500% of 
0.806 g per day on 28 July 2004. 
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Figure 20. Tota] phosphorus concentration over time for three treatments and 
pond. Ell"or bars (±2 SE for 6 mesocosms and pond) are incJuded. Treatment 
percentages are based on daily loading of 0.806 g (from Manny 1975 and Kear 
1963). 501500% began as 1h of the 0.806 g per day and was increased to 500% 
of 0.806 g per day on 28 July 2004. 
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Chlorophyll-a versus Feces added Scatterplot 
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Figure 21. Scatterplot of chlorophyll-a concentration versus feces added for 
treatments receiving fecal additions only. 
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Phycocyanin versus Feces added Scatterplot 
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Figure 22. Scatterplot of phycocyanin concentration versus feces added for treatments 
receiving fecal additions only. 
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Soluble Reactive Phosphorus versus Feces added Scatterplot 
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Figure 23. Scatterplot of soluble reactive phosphorus concentration versus feces 
added for treatments receiving fecal additions only. 
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Secchi Depth versus Feces added Scatterplot 
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Figure 24. Scatterplot of Secchi depth versus feces added for treatments receiving 
fecal additions only. 

58 



Total Kjeldahl Nitrogen versus Feces added Scatterplot 
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Figure 25. Scatter plot of total Kjeldahl nitrogen concentration versus feces added for 
treatments receiving fecal additions only. 
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Phytoplankton groups in control and 50/500% treatment 
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Figure 26. Counts of phytoplankton in control and 501500% treatment at day 33 (final 
day of the experiment). 
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Figure 27. Biovolume of phytoplankton in control and 50/500% treatment at day 
33 (final day of the experiment). 
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Figure 28. Scatterplot of turbidity (NTU) over time for a feces settling experiment. 
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Figure 29. Nitrogen to phosphorus ratios in four treatments during the experiment. 
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Appendix 1 

Fecal Addition Calculations. 

0.175 g P per dropping (Manny 1994) 
3.147 x 10-3 g P per g fresh weight feces (5.56 g fresh weight per dropping) (Manny 
1974) 
3.147 mg P per g fresh weight feces 

34 kg P in January from waterfowl (Sherer et al. 1995) 
10794 kg dry weight in January (3. 147 x 10-3 g P per g fresh weight) 
348.1 8 kg fresh weight d-1 in January (31 d) 
348182.284 g fresh weight d-1 

0.994 g fresh weight d- 1 m-3 (Manny .1974) 
0.806 g feces (fresh weight) added d-1 (based on 0.811 m3

) 

2.419 g feces added every three d for 100% value 
1.209 g feces added every three d for 50% value 
12.09 g feces added every three d for 500% valu~ 
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