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Abstract 

 

 Rhamnus cathartica (common buckthorn) is a shrub or small tree that is invasive in 

the northern and central United States and southern and eastern Canada.  Buckthorn 

invades a wide variety of habitat types, including open areas and forests.  Impacts of 

buckthorn invasion include the loss of native species, alterations to soil nutrient cycling and 

decay rates, and increases in non-native earthworm abundances.  Although it is shade-

tolerant, buckthorn grows rapidly in high light.  However, the effects of competition on 

buckthorn growth are more pronounced in high light environments.  Therefore, buckthorn 

may be particularly adapted to succeed in habitats with intermediate light regimes, which 

provide ample light for growth and decreased competition.  Habitats with low soil fertility 

may also be especially vulnerable to buckthorn invasion due to buckthorn’s ability to 

increase soil nitrogen while limiting the growth of herbaceous competitors.  An 

observational and experimental study was performed to determine how habitat, 

competition, and soil nutrient status affect buckthorn success.  I hypothesized that seedlings 

would have greater success in 1) shrubland habitats than meadow or forest edge habitats 

and 2) plots with decreased soil fertility than plots with increased or unaltered soil fertility.   

For the observational study, I measured vegetation and soil characteristics and leaf litter 

decomposition rates in one meadow, shrubland, and forest edge habitat at six sites in 

western New York.  Meadows were different from shrub and forest habitats in vegetation, 

but not soil characteristics.  Meadows had more herbaceous vegetation and fewer seedlings 

and saplings than the shrub and forest habitats. There were no differences in herbaceous 

vegetation cover, woody vegetation abundances and diameters, or in soil characteristics 
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between the shrub and forest habitats.  Buckthorn leaf litter decayed faster than a native 

species mix.  For the experiment, I measured the effect of habitat, competition, and soil 

nutrients on the growth and photosynthetic rates of transplanted buckthorn seedlings at 

the six sites.  Although photosynthetic rates and light levels were greater in the meadows 

than the shrub and forest habitats, buckthorn seedlings displayed increased height loss in 

the meadows that was likely due to seedling herbivory and desiccation.  While herbivory 

and desiccation likely exerted the strongest effects on seedling growth in the meadows, 

light availability exerted the strongest effects in the shrub and forest habitats.  In contrast 

with my hypotheses, competition had no effect on seedling growth, and soil fertility 

affected only a small subset of seedlings.  As meadow habitats were less susceptible to 

invasion than shrub and forest habitats, management efforts should prioritize shrublands 

and forests for buckthorn removal.  As the competition and soil nutrient treatments had no 

effect on buckthorn growth in the shrubs and forests, management practices based on 

manipulating soil fertility or planting native competitors to inhibit buckthorn are not 

indicated.  Instead, buckthorn monitoring and removal practices in forest and shrub habitats 

should focus on areas with increased light availability, which may create an invasion window 

for buckthorn.     
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Introduction 

Rhamnus cathartica L. 

Rhamnus cathartica L. (common buckthorn) is a deciduous shrub or small tree that 

is invasive throughout the northern and central United States and southern and eastern 

Canada (Kurylo et al. 2007).  Native to Eurasia and northern Africa (Godwin 1943), 

buckthorn was introduced to North America in the late 1700s (Kurylo and Endress 2012) and 

became common in New England by the early 1800s, where it was used ornamentally and as 

a shelterbelt tree (Archibold et al. 1997).  It is dioecious, reproducing sexually through bird-

dispersed fruits (Godwin 1943).  As a habitat generalist, buckthorn invades a variety of 

habitat types, including wetlands and uplands, open areas, and forest interiors (Kurylo et al. 

2007).  Buckthorn exhibits rapid growth (Harrington et al. 1989b, Grubb et al. 1996, Stewart 

and Graves 2004), high fecundity (Archibold et al. 1997), shade tolerance (Grubb et al. 

1996), and production of secondary metabolites (Izhaki 2002, Seltzner and Eddy 2003).  

Buckthorn has been observed to produce leaves earlier and senesce later than co-occurring 

native species within its invasive range (Harrington et al. 1989a, Archibold et al. 1997).   

Buckthorn invasion affects habitats on the community and ecosystem levels.  On the 

community level, buckthorn invasion has been shown to decrease germination rates, 

survival, growth, and reproduction of native herbaceous species (Klionsky et al. 2011) and 

decrease the establishment of native canopy trees (Mascaro and Schnitzer 2011).  On the 

ecosystem level, buckthorn invasion has been found to increase soil nitrogen, carbon, pH, 

and moisture levels, while decreasing soil carbon: nitrogen ratios (Heneghan et al. 2006).  

Unlike other members of the Rhamnaceae family that form associations with nitrogen-fixing 

Frankia species (Benson and Silvester 1993), buckthorn alters soil properties through its 
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nitrogen-rich leaf litter, which decays more rapidly than native litter (Heneghan et al. 2002).  

The alterations to nutrient cycling and decomposition caused by buckthorn have been 

associated with significant decreases in soil microarthropod abundances (Heneghan et al. 

2009) and changes in substrate-use patterns of soil microbes (Heneghan et al. 2004).  

Buckthorn’s ecosystem-altering effects can lead to further community-level effects by 

shifting the distributions of common mammalian species (Vernon et al. 2014). 

Buckthorn invasion can also facilitate exotic earthworm invasion success, which 

produces further alterations in soil processes and structure (Heneghan et al. 2007, Madritch 

and Lindroth 2009, Klionsky et al. 2011).  Heneghan et al. (2007) characterized the 

interaction between buckthorn and exotic earthworms as a modest invasional meltdown [a 

positive interaction between two or more non-native species in which the interacting 

species facilitate one another’s invasion success synergistically (Simberloff and Von Holle 

1999)] with a potential for legacy effects due to soil alterations and invasions by additional 

exotic species.  Another study found that exotic earthworms were associated with increased 

abundance and biomass of buckthorn seedlings, providing further evidence of the 

interactive nature of buckthorn and earthworm invasion (Roth et al. 2015).   

Buckthorn often forms dense monocultures in the habitats it invades (Boudreau and 

Willson 1992, Archibold et al. 1997), which may increase the severity of community and 

ecosystem effects.  Shifts in ecosystem and soil processes may lead to changes in plant 

community structure and functioning (Heneghan et al. 2009).  While no studies have directly 

measured the effects of buckthorn-induced soil alterations on plant communities, other 

studies of invasive plants have shown that alterations to soil nutrient levels and cycling can 

reshape plant communities by decreasing the abundances of or excluding native species 
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that are not adapted to the novel soil nutrient conditions produced by invaders (Vitousek et 

al. 1987, Chapin et al. 2000, Ehrenfeld et al. 2001, Allison and Vitousek 2004).      

Interactions among competition, light availability, and invasion success 

Buckthorn’s invasion success may be due in large part to its physiological and life-

history traits.  Buckthorn is unique in that it is both shade-tolerant (Grubb et al. 1996, 

Archibold et al. 1997, Knight 2006) and highly responsive to increased light availability 

(Harrington et al. 1989a, Grubb et al. 1996).  This ability to take advantage of fluctuating 

light levels may increase buckthorn’s success in forest canopy gaps (Knight et al. 2007) and 

other habitats with periodic light fluctuations.  Studies measuring buckthorn performance in 

a range of light levels found that buckthorn seedling survival (Gourley 1985), biomass 

(Grubb et al. 1996, Knight 2006), percent cover (Scriver 2005), and height (Willert 2000, 

Scriver 2005) were greater in intermediate to high light levels.  On an absolute scale of light 

availability, buckthorn’s preference might best be described as intermediate (i.e., halfway 

between full sunlight and darkness); however, an intermediate absolute light availability is 

likely to be described as relatively high light availability within forest understories due to the 

shady conditions within forests.     

Light availability is often linked to growth rates via photosynthetic capacity.  A 

comparison of the photosynthetic rates of buckthorn shrubs growing in a forest understory 

and an open hedgerow habitat found that hedgerow shrubs had greater photosynthetic 

rates and daily carbon accumulation rates than understory shrubs, which were limited by 

light availability; also, buckthorn’s photosynthetic rates were roughly twice those of the co-

occurring native shrub, Cornus racemosa (Harrington et al. 1989a).  Buckthorn’s phenology 
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also influenced its total annual carbon gain, with photosynthesis occurring prior to leaf 

emergence and extending after the senescence of native species (Harrington et al. 1989a).   

While buckthorn is sensitive to both aboveground and belowground competition, 

the effects of competition are dependent on light availability.  Herbaceous species 

decreased the growth of buckthorn seedlings in hardwood forest canopy gaps by decreasing 

light and soil NO3-; despite the negative effects of herbaceous competitors, buckthorn 

growth and survival were greater in canopy gaps than in closed canopy understory (Knight 

2006).  Similarly, two studies investigating the re-invasion of buckthorn in oak savannas 

following restoration found that tree canopy thinning increased buckthorn height (Willert 

2000, Scriver 2005).  Planting with native grasses and forbs initially decreased buckthorn 

growth (Willert 2000), but this effect did not persist over time; a follow-up study found that 

planting native grasses and forbs had no effect on buckthorn cover, stem density, or height 

(Scriver 2005), demonstrating that canopy-level light availability was more important over 

time for buckthorn performance than competition.  Also, increased canopy cover in late-

successional fields in an abandoned agricultural field chronosequence was associated with a 

reduction in buckthorn percent cover (Copenheaver 2008).  Thus, while herbaceous 

competitors can decrease buckthorn’s success, the negative effects of this competition can 

be negated by increased light availability.       

Effects of soil fertility on invasion success 

 Multiple studies have shown that the competitive effects of neighboring vegetation 

vary with soil fertility (Grime 1974, Huston 1979, Gaucherand et al. 2006).  For example, low 

soil fertility can decrease the competitive effects of herbaceous species on neighboring 
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individuals because low fertility environments are likely to exhibit lower plant abundances 

than high fertility environments, which decreases the likelihood of competitive interactions.  

A competition experiment in abandoned agricultural fields in Canada found that while the 

removal of native competitors significantly increased invasive cover in fertile sites, invasive 

cover in less fertile sites was not affected by neighbor removal (Reader and Best 1989).  

Similarly, a study measuring the effects of neighboring vegetation on three tree species 

found that inhibition of seedling growth was most pronounced in favorable sites, where 

seedling growth was greatest with competitors removed (Berkowitz et al. 1995).  Inhibition 

was much weaker in unfavorable sites, and in some unfavorable sites, neighboring 

vegetation facilitated seedling growth (Berkowitz et al. 1995).   

Buckthorn’s positive effects on soil nitrogen availability may enhance its ability to 

invade low fertility environments while maintaining a competitive advantage.  A study 

measuring the competitive effects of buckthorn on understory forbs found that increases in 

soil fertility associated with buckthorn invasion did not lead to greater success for native 

species (Klionsky et al. 2011).  Forbs growing in invaded plots exhibited decreased survival, 

growth, and reproduction despite increased soil fertility; the authors posited that buckthorn 

decreased the performance of native forbs by decreasing light availability and through 

allelopathy (Klionsky et al. 2011).  Thus, the drivers of buckthorn invasion success may vary 

with resource availability.  In fertile habitats, competition from herbaceous species may 

decrease invasion success.  In less fertile habitats, buckthorn invasion success may increase 

due to decreased competition and buckthorn’s capacity to increase soil nitrogen availability 

while maintaining a competitive advantage over native herbaceous species.     
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Buckthorn’s phenology and physiology may make it particularly adapted to invade 

low-fertility environments.  Some of buckthorn’s life history traits, such as its long leaf 

lifespan and production of secondary metabolites, are associated with increased resource-

use efficiency (Chapin 1980, Coley et al. 1985).  Invasive plants can sometimes exhibit 

greater efficiency than native plant species that are adapted to low-fertility environments.  

A study comparing the performance of invasive species with native Hawaiian species in low-

resource environments found that invasives had greater carbon assimilation rates in light-, 

nutrient-, and water-limited environments and greater light-use efficiency, instantaneous 

nitrogen-use efficiency, and instantaneous energy-use efficiency in light- and nutrient-

limited environments (Funk and Vitousek 2007).  The longer leaf lifespans of the native 

species, however, led to similar total nutrient uptake levels for natives and invasives over 

time (Funk and Vitousek 2007).  Buckthorn, however, retains its leaves longer than common 

competing native species within its invasive range (Harrington et al. 1989a, Archibold et al. 

1997).  Buckthorn’s adaptations to low-fertility environments may be especially important in 

areas of the northeastern United States that were exposed to intensive agricultural practices 

followed by abandonment after soils were depleted.  Agricultural activities generally 

decrease soil carbon and nitrogen levels (McLauchlan 2006).  Communities formed on 

abandoned agricultural fields may be more susceptible to invasion because the native 

species therein are not adapted to low-fertility environments; the disturbance to soil 

properties from agricultural activities creates a window for invaders with greater resource-

use efficiencies than native competitors.   
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Objective 

Buckthorn is a common invasive plant in many parts of North America that can 

invade a variety of habitats.  While the effects of buckthorn invasion are becoming 

increasingly well-documented, there have been few experimental manipulations performed 

using buckthorn.  The effects of light availability, competition, and soil fertility must be 

separated to understand the mechanisms underlying buckthorn’s success.  Meadows, 

shrublands, and forests are three common habitat types within the northeastern United 

States that are invaded by buckthorn.  As light availability varies among these habitats, 

habitat type can be used to provide a light availability gradient.  The objective of this study 

was to determine how habitat, competition, and soil fertility interact to influence buckthorn 

growth and photosynthesis.   

I hypothesized that buckthorn would have greater success in shrub habitats than 

meadows or forests because shrublands provide the most advantageous light availability 

regime for buckthorn.  The tall shrubs that characterize shrublands offer buckthorn 

seedlings protection from desiccation and limit competition from herbaceous competitors 

by decreasing the average light availability.  As buckthorn is shade tolerant (Grubb et al. 

1996) and has a longer leaf lifespan than co-occurring native woody species (Harrington et 

al. 1989a, Archibold et al. 1997), the light limitation that decreases the competitive effects 

of herbaceous species is expected to have minimal effects on buckthorn’s success.  I also 

predicted that soil fertility and competition would have a positive interaction such that as 

soil fertility decreased, the effects of competition on buckthorn success would also 

decrease.  Buckthorn’s long leaf lifespan, defensive chemicals, and responsiveness to light 

availability may confer a competitive advantage in low-fertility environments, whereas 
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native plants in the northeastern United States may be less adapted to low-fertility 

environments, making them less effective competitors in such environments.   

To test my hypotheses, I conducted an experimental manipulation using 

transplanted buckthorn seedlings exposed to habitat, competition, and soil fertility 

treatments.  I also performed an observational study within each of the study sites to 

compare the vegetation, soil, and litter decomposition characteristics among habitats in 

order to determine which parameters were most important for buckthorn success.   

Methods 

Study sites 

Both the observational and experimental studies were conducted in one meadow, 

shrubland, and forest edge habitat in each of six sites in western New York:  Hunters Creek 

County Park, Erie County; Iroquois National Wildlife Refuge, Orleans County; Isaac Gordon 

Nature Park, Monroe County; Knox Farm State Park, Erie County; Montezuma National 

Wildlife Refuge, Seneca County; and Northern Montezuma Wildlife Management Area 

(NMWMA), Cayuga County (Figure 1).  Mean annual precipitation values for the region 

range from 75 mm to 100 mm, and mean temperatures range from -6°C to -4°C in January 

and 20°C to 22°C in July based on 1981-2010 climate normals (Northeast Regional Climate 

Center 2016).  Common tree species included R. cathartica, Fraxinus pennsylvanica (green 

ash), Populus deltoides (eastern cottonwood), and Ostyra virginiana (American 

hophornbeam).  Common shrub species included R. cathartica, Cornus racemosa (gray 

dogwood), and Lonicera tatarica (Tartarian honeysuckle).  Herbaceous vegetation was not 

identified to species; however, the meadow sites contained mixtures of grasses and forbs 
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interspersed with the occasional shrub or tree.  Each site had pre-existing buckthorn 

populations. 

Observational study - vegetation and soil measurements 

During September and October 2013, I randomly established three 5 m2 plots with 

two nested 1 m2 subplots within each habitat.  I measured the diameter at breast height 

(DBH) of all woody species greater than 1.4 m tall in the 5 m2 plots.  Individuals with a DBH 

ranging from 2.5 to 12.7 cm were characterized as sapling species, and individuals with a 

DBH greater than 12.7 were characterized as tree canopy species.  I measured seedling 

abundance, herbaceous vegetation percent cover, soil moisture, and soil organic matter 

content within the 1 m2 subplots.  I measured seedling abundance by counting the number 

of woody individuals less than 1.4 m tall.  Whereas trees and saplings were all identified to 

species, due to the difficulty of identifying seedling species and the large numbers of 

seedlings present, I identified buckthorn seedlings to species and counted all other seedlings 

as “Other.”  Seedling abundances were averaged by species (buckthorn and other) for each 

habitat/site combination.  The percent cover (0 – 100%) of herbaceous vegetation was 

visually estimated.  Soil characteristics were determined by collecting one 2-cm-diameter, 

15-cm-depth soil core from the center of one 1-m2 subplot per 5-m2 plot.  The three cores 

per habitat were pooled into one sample and sieved (2 mm).  I measured soil moisture by 

oven drying known volume samples at 105°C for 48 hours.  The dried samples were then 

combusted at approximately 360°C for two hours to calculate the loss on ignition (LOI) to 

determine soil organic matter content.  



12 
 

Observational study – litter decay rates by habitat and litter type 

Leaf litter decay rates were measured by determining the change in mass of a 

known amount of litter placed in mesh litterbags.  All leaf litter was collected from Iroquois 

National Wildlife Refuge during October and November 2012 using a shade-cloth placed on 

the soil surface to capture litterfall.  The collected litter was dried at room temperature and 

separated into buckthorn litter and native leaf litter.  The predominant native species were 

green ash, F. americana (white ash), Crataegus monogyna (hawthorn), eastern cottonwood, 

and Acer saccharinum (silver maple).  One gram of dry litter was sealed into 10-cm2-mesh 

litterbags.  Twelve buckthorn litterbags and 12 native litterbags were staked onto the soil 

surface in each habitat at each site in April 2013.  Four replicates of each litter type were 

collected at each of three harvests occurring in July/August 2013, October 2013, and 

November/December 2013.  After retrieval, the litterbags were air-dried at room 

temperature and then oven-dried at 60°C for 48 hours.  Mass loss during transport and 

drying was accounted for using 10 calibration bags for each litter type.  A correction factor 

for each litter type was calculated by dividing the oven-dried mass of the litter by the air-

dried mass of the litter.  I calculated decomposition rates using a single exponential decay 

model, 
𝑋𝑡

𝑋0
= 𝑒−𝑘𝑡 where 𝑋𝑡

𝑋0
 is the fraction of original mass remaining at time t in years and k 

is the annual decay constant (Olson 1963).  I used a linear model to determine the annual 

decomposition rate (k), which is equal to the slope of the line produced by regressing the 

natural logarithm of the mean proportion of mass remaining over time in years.  The four 

replicates at each time-point were averaged to calculate the mean proportion of mass 

remaining.      
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Observational study – statistical analyses 

One-way ANOVAs were used to analyze the effect of habitat on seedling abundance, 

sapling abundance, sapling DBH, tree abundance, tree DBH, herbaceous vegetation percent 

cover, soil moisture, and LOI.  Data were averaged across each plot and subplot to calculate 

the mean value for each site.  The six sites were used as replicates.   

The abundance of buckthorn was analyzed using a two-way ANOVA with habitat 

type and size class (seedling, sapling, and tree) as the main effects.  The abundances of 

buckthorn within each size class were averaged across the three plots and two subplots at 

each site.  Site was used as the level of replication.  Leaf litter decomposition rates were 

analyzed using a two-way ANOVA, with habitat and litter type as the main effects.  The six 

sites were used as replicates.    

The datasets met most of the assumptions of the ANOVAs.  The dependent variables 

were continuous, the observations were independent, and the dependent variables 

approximated normality in each cell of the design as determined using normal Q-Q plots.  

Five of the datasets were transformed to remove outliers.  The seedling, sapling, and tree 

abundance datasets and the total buckthorn abundance dataset were all logarithm 

transformed.  The litter decay rate dataset was transformed by multiplying each value by 

negative one and taking the square root of the product.  This transformation was chosen 

using trial and error.  The seedling abundance dataset contained one outlier after 

transformation.  This dataset was analyzed twice—once with the outlier included and once 

with the outlier removed.  The statistical trends were the same with and without the outlier; 

results are reported for the dataset containing the outlier.  For clarity, untransformed mean 

values are reported in the text and figures for all transformed datasets.     
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Levene’s Test of Equality of error variances was used to assess homogeneity.  The 

seedling abundance, sapling abundance, sapling DBH, tree DBH, soil moisture, LOI, and 

buckthorn abundance datasets met the assumption of homogeneity of the variance.  The 

ratio of the largest within-group variance to the smallest within-group variance (Fmax) was 

calculated for the datasets with heterogeneous variances.  Fmax was greater than three for all 

of these datasets, indicating that the heterogeneity of the variances was likely to cause 

alpha inflation (Keppel 1991).  As such, the level of significance was reduced from α = 0.05 

to α = 0.025 for the tree abundance, herbaceous vegetation percent cover, and litter decay 

rate datasets.   

Significant results were further analyzed using Tukey post hoc tests for multiple 

comparisons.  All statistical analyses were performed using IBM SPSS Statistics (version 22).   

Experimental study – buckthorn relative growth rates and biomass 

Between July and October 2012, 54 transplant plots (0.33 m x 0.33 m, 6 replicates 

per habitat per site, n = 108) were established within each of the three habitat types 

(meadow, shrubland, and forest edge) at the six study sites.  One buckthorn seedling was 

transplanted into the center of each plot.  The seedlings were all harvested from a forested 

area within the Montezuma National Wildlife Refuge up to one week prior to planting.  The 

initial seedling height and diameter at the root collar (mean ± SD: 23.4 ± 11.3 cm and 0.96 

cm ± 0.46 cm, respectively) were measured after transplanting.  Two treatments, soil 

nutrient level and plant competition, were applied to the experimental plots in a factorial 

design.  The plant competition treatment was applied when the plots were established (July-

October 2012) and consisted of three levels:  aboveground competition (AG), belowground 
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competition (BG), and no competition (NC).  The AG plots were situated so that herbaceous 

and/or woody subcanopy plant competitors covered at least 75% of the plot.  In habitats 

lacking a sufficient abundance of interspecific competitors, other buckthorn individuals were 

used as plot competitors.  In the BG plots, aboveground biomass from herbaceous and 

woody subcanopy competitors was tied back using rope and cable ties to minimize 

competition for sunlight.  In the NC plots, all existing vegetation (excluding canopy trees) 

was cut at ground level and cleared from the plot.  The competition treatments were 

maintained throughout the experiment.     

The soil nutrient treatment consisted of a single application of three levels:  

decreased (FS), increased (FN), and ambient (F0) soil nitrogen.  To decrease soil nitrogen, 

sawdust (44.0 g per plot) was spread on the soil surface in May 2013.  Plant fertilizer (0.80 g 

NH4NO3 per plot) was applied to the surface of plots in July 2013.  Soil nitrogen levels were 

not altered in the ambient treatment.   

I measured buckthorn seedling height and diameter three times for each seedling.  

Height measurements were taken using a meter stick, and diameter measurements were 

taken using calipers.  The initial measurements were performed in July 2013.  This 

measurement was taken after the competition treatments and the sawdust treatment were 

applied and before the fertilizer treatment was applied.  I assumed that the competition and 

sawdust treatments would take longer to produce a measurable effect due to the length of 

time needed for plant growth in response to altered competition and the length of time 

required for the sawdust to decrease soil nitrogen levels.  Although the seedlings were 

measured directly following transplanting, which occurred from July to October 2012, these 

measurements were not included in the analysis because many seedlings died and were 
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replaced from October 2012 to July 2013.  Thus, all the seedlings were re-measured in July 

2013 to standardize the length of time between subsequent measurements.   

The first measurement following the application of all treatments was taken in 

September 2013.  The final measurement was taken in November and December 2013.  

Seedlings that died or were browsed were not replaced following the initial July 2013 

measurement.  Thus, for any seedling, the initial height or diameter measurements could be 

greater than the subsequent measurements due to height or diameter loss from breakage, 

herbivory, or desiccation. 

At the conclusion of the experiment, the aboveground and belowground biomass of 

the buckthorn seedlings was measured.  The seedlings were harvested from the 

experimental plots by digging, washed to remove soil from the roots, and oven-dried at 60°C 

for 24 hours.  The aboveground and belowground portions of the dried seedlings were 

separated and massed.  Then, the ratio of aboveground to belowground biomass was 

calculated by dividing the aboveground mass by the belowground mass. 

Experimental study – buckthorn photosynthetic rate and PAR 

Net photosynthetic rate (µmol CO2 m-2 s-1) was measured for a sub-sample of 

buckthorn seedlings using a LiCor 6400 portable CO2 analyzer with a leaf chamber at 

constant CO2 and ambient light.  External photosynthetically active radiation (PAR, µmol m-2 

s-1) was also measured at that time using a light sensor mounted to the leaf chamber.  The 

instrument was calibrated to maintain relative humidity within a favorable range.  

Photosynthesis and PAR were each measured two times during the experiment.  The initial 

photosynthesis and PAR measurements were taken in July and August 2013 when the 
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nitrogen fertilizer was applied to plots.  The second photosynthesis and PAR measurements 

were taken in September 2013.  The photosynthesis and PAR measurements were organized 

into four datasets:  initial photosynthetic rate (PS Pre), initial PAR (PAR Pre), final 

photosynthetic rate (PS Post), and final PAR (PAR Post).  One seedling was selected for 

measurement from each treatment-level combination for each site and habitat (n = 9 per 

habitat, 27 per site) based on the presence and number of leaves.  Leaves that were large 

enough to fill the leaf chamber and appeared healthy were preferentially selected for 

measurement.  Many of the seedlings’ leaves were smaller than the leaf chamber.  Other 

seedlings had no leaves or loosely attached leaves, particularly during the second 

measurement.  Many of the treatments only had one or two seedlings with suitable leaves 

for measurement.  If possible, the same seedling was measured on both dates; however, in 

some cases, another seedling had to be substituted due to a lack of leaves for sampling.         

Experimental study – statistical analyses 

The effects of habitat, competition, and soil nutrient levels on buckthorn seedling 

growth rates were analyzed using three-way ANOVAs.  First, I calculated the relative growth 

rate (RGR) of each seedling for both height and diameter by subtracting the initial 

measurement from the final measurement and dividing by the number of days between 

measurements.  

𝑅𝐺𝑅ℎ𝑒𝑖𝑔ℎ𝑡 =
(𝐻𝑓 −𝐻𝑖)

𝑇𝑑𝑎𝑦𝑠
 

𝑅𝐺𝑅𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =
(𝐷𝑓 − 𝐷𝑖)

𝑇𝑑𝑎𝑦𝑠
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A number of seedlings had negative RGR values, presumably due to a combination 

of desiccation and herbivory.  To differentiate between the effects of the treatments on 

height/diameter accumulation and height/diameter loss, analyses were performed for 

positive height and diameter RGR values, and then further analyses were performed for 

both positive and negative height and diameter RGR values.  I analyzed the height and 

diameter RGRs separately.  The six sites were considered the level of replication, so the six 

pseudo-replicates within each site were averaged, and these averages were used for the 

analyses.  The buckthorn biomass ratio, photosynthesis, and PAR measurements were 

analyzed similarly, with the six sites used as replicates.   

Three-way factorial ANOVAs were used to measure the effects of habitat, 

competition, and soil nutrient levels on the nine dependent variables (positive HRGR, 

positive DRGR, all values HRGR, all values DRGR, buckthorn biomass ratio, PS Pre, PS Post, 

PAR Pre, and PAR Post).  The datasets met most of the assumptions of the three-way 

ANOVAs.  The dependent variables were continuous, the observations were independent, 

and the dependent variables approximated normality in each cell of the design as 

determined using normal Q-Q plots.  All of the datasets contained outliers.  Three datasets 

were transformed to remove the outliers (positive HRGR—square root transformation, PAR 

Pre and PAR Post—logarithm transformation).  For clarity, untransformed values are 

reported in the text and figures.  For the remaining datasets, no transformations were found 

that removed the outliers.  These datasets were analyzed twice—once with the outliers 

included and once with the outliers removed.  The statistical trends were the same with and 

without the outliers for all of the untransformed datasets.  Results are reported for the 

datasets containing outliers.   
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Levene’s Test of Equality of error variances was used to assess homogeneity.  Only 

the positive DRGR dataset met the assumption of homogeneity of the variance.  Fmax was 

greater than three for the datasets with heterogeneous variances, so the level of 

significance was reduced from α = 0.05 to α = 0.025 (Keppel 1991) for all datasets except the 

positive DRGR dataset.  Significant results were further analyzed using Tukey post hoc tests 

for multiple comparisons.   

Results 

Observational study – vegetation and soil measurements 

Habitat had no significant effect on soil moisture, LOI, sapling DBH, tree abundance, 

or tree DBH (Tables 1 and 2).  Although the difference was non-significant, mean tree 

abundances were lowest in the meadows and greatest in the forest habitats (Table 2).  

Habitat had a significant effect on seedling abundance (F2,13 = 11.540, p = 0.001) and sapling 

abundance (F2,11 = 8.574, p = 0.006).  Seedling abundances were significantly lower in the 

meadow habitats (mean ± standard error, 13,056 ± 5,716 seedlings/ha) than the shrub 

(273,056 ± 118,601 seedlings/ha) and forest (320,833 ± 153,869 seedlings/ha) habitats 

(Figure 2).  Shrub and forest seedling abundances were not significantly different.  Sapling 

abundance was significantly lower in the meadow habitats (178 ± 153 saplings/ha) than the 

shrub (4,200 ± 1,120 saplings/ha) and forest (2,978 ± 672 saplings/ha) habitats (Figure 3).  

The shrub and forest sapling abundance values were not significantly different.   

Habitat had a significant effect on herbaceous vegetation percent cover (F2,15 = 

14.216, p < 0.001).  Herbaceous vegetation percent cover was significantly greater in the 

meadow habitats (98.47 ± 1.02%) than the shrub (56.89 ± 13.62%) or forest (31.51 ± 7.40%) 
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(Figure 4).  Herbaceous percent cover in the forest and shrub habitats was not statistically 

different. 

Observational study – buckthorn abundance by habitat and size class 

Size class (F2,19 = 34.664, p < 0.001), but not habitat, had a statistically significant 

effect on buckthorn abundance.  Post hoc analyses revealed that the abundance of 

buckthorn seedlings (112,500 ± 55,244 individuals/ha) was significantly greater than the 

abundance of buckthorn saplings (733 ± 297 individuals/ha) and buckthorn trees (207 ± 78 

individuals/ha) (Figure 5).   

Observational study – litter decay rates by habitat and litter type 

 Litter type had a statistically significant effect on decomposition rates (F1,30 = 46.215, 

p < 0.001).  Habitat and the interaction term were both non-significant.  Buckthorn litter (k = 

-6.04 ± 0.82) had faster decomposition rates than the leaf litter of native species (k = -1.44 ± 

0.16) (Figure 6).  

Experimental study – buckthorn relative growth rates 

 None of the treatments had a statistically significant effect on buckthorn seedling 

height RGR within the positive-values-only HRGR dataset (Table 3).  For the positive values 

DRGR dataset, there was a significant interaction between the habitat and soil nutrient 

treatments (F2,102 = 7.40, p = 0.001, Figure 7).  Seedlings in the meadows (0.0017 ± 0.0003 

cm/day) had greater diameter RGRs when nitrogen was added to plots than seedlings in the 

shrub (0.0008 ± 0.0002 cm/day) or forest habitats (0.0009 ± 0.0001 cm/day).  There was no 

difference between the diameter RGRs of the shrub and forest seedlings.     
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 For the HRGR dataset including both positive and negative values, buckthorn 

seedling height RGR varied significantly among habitats (F2,135 = 11.857, p > 0.001).  Height 

RGR was less negative in the shrub (-0.0058 ± 0.0019 cm/day) and forest habitats (-0.0057 ± 

0.0019 cm/day) than the meadow habitats (-0.0214 ± 0.0038 cm/day) (Figure 8).  For the 

DRGR dataset including both positive and negative values, the treatments had no significant 

effects on diameter RGR (Table 4). 

Experimental study – buckthorn biomass 

 Habitat (F2,127 = 4.749, p = 0.010), competition (F2,127 = 5.917, p = 0.003), and soil 

nutrient levels (F2,127 = 5.483, p = 0.005) all had statistically significant effects on buckthorn 

seedling AG:BG biomass ratios, although none of the interactions were significant (Table 5).  

Post hoc multiple comparisons showed that the AG:BG biomass ratio was lower in the 

meadow habitat (0.8973 ± 0.0369) than the shrub (1.0388 ± 0.0450) and forest (1.0316 ± 

0.0326) habitats (Figure 9).  The NC treatment (0.9052 ± 0.0373) had a lower biomass ratio 

than the AG (1.0824 ± 0.0397) treatment (Figure 10).  The BG treatment (0.9801 ± 0.0377) 

was not statistically different from the NC or AG treatments.  The FN soil nutrients 

treatment (1.0881 ± 0.0488) had a significantly greater biomass ratio than the FS (0.9386 ± 

0.0325) and F0 (0.9410 ± 0.0313) treatments (Figure 11).   

Experimental study – buckthorn photosynthetic rate and PAR 

 For the PS Pre dataset, habitat had a statistically significant effect on buckthorn 

seedling photosynthesis (F2,134 = 12.336, p < 0.001, Table 6).  Net photosynthetic rates were 

greater in the meadow habitats (3.6 ± 0.4 µmol CO2 m-2 s-1) than the shrub (1.3 ± 0.3 µmol 

CO2 m-2 s-1) or forest (0.5 ± 0.6 µmol CO2 m-2 s-1) habitats (Figure 12).  Habitat also had a 
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significant effect on photosynthesis in the PS Post dataset (F2,135 = 15.067, p < 0.001, Table 

6).  Net photosynthetic rates were greater in the meadow habitats (3.8 ± 0.4 µmol CO2 m-2 s-

1) than the shrub (1.7 ± 0.4 µmol CO2 m-2 s-1) or forest (1.2 ± 0.2 µmol CO2 m-2 s-1) habitats 

(Figure 12).   

For the PAR Pre dataset, PAR levels varied significantly among habitat (F2,134 = 

89.811, p < 0.001) and soil nutrient (F2,134 = 5.773, p = 0.004) treatments (Table 7).  PAR was 

greater in the meadow (713 ± 81 µmol m-2 s-1) habitats than the shrub (115 ± 36 µmol m-2 s-

1) or forest (93 ± 31 µmol m-2 s-1) habitats (Figure 13).  The sawdust-added soil nutrients 

treatment (395 ± 71 µmol m-2 s-1) had greater PAR than the nitrogen-added (277 ± 66 µmol 

m-2 s-1) or ambient (252 ± 63 µmol m-2 s-1) treatments (Figure 14).  For the PAR Post dataset, 

PAR was significantly different among habitats (F2,135 = 45.612, p < 0.001, Table 7).  The 

meadow habitat (875 ± 90 µmol m-2 s-1) had greater PAR than the shrub (242 ± 56 µmol m-2 

s-1) or forest (110 ± 32 µmol m-2 s-1) habitats (Figure 13).  PAR levels were also greater in the 

shrub habitats than the forest habitats. 

Across both measurement dates, PAR levels statistically significantly predicted 

photosynthetic rates (F1,49 = 71.634, p < 0.001), accounting for 59.4% of the variation in 

photosynthesis. 

Discussion 

Observational study – vegetation and soil measurements 

 The three habitat types showed no difference in many of the measured vegetation 

and soil parameters.  Although abundances of all species of trees were lowest in the 

meadow habitats and greatest in the forest habitats (Table 2), these differences were not 
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significant.  This finding is at least partially due to the use of forest edges, rather than forest 

interiors, which limited the amount of woody vegetation.  Also, while the habitats were 

rigidly delineated for the purpose of the study, ecological boundaries are less strictly 

defined.  The habitats tended to be situated near or directly adjacent to one another, often 

forming a matrix of meadow, shrub, and forest patches.  Also, study sites were chosen 

based on the presence of pre-existing buckthorn populations.  As buckthorn tends to 

displace native species through competitive and possibly allelopathic effects (Klionsky et al. 

2011), the habitats were likely already degraded.  In addition to buckthorn, other invasive 

species were present.  These species included Elaeagnus umbellata (autumn olive), L. 

periclymenum (European honeysuckle), Tartarian honeysuckle, and Rosa multiflora 

(multiflora rose).  Thus, the lack of a significant difference in tree abundances among the 

habitats may also have been due to pre-existing effects of buckthorn invasion, which can 

lead to a shift from large trees to smaller trees in forest habitats and a shift from 

herbaceous species to woody species in meadow habitats (Mascaro and Schnitzer 2011).       

 The main differences among the habitats were in sapling and seedling abundances 

and herbaceous vegetation percent cover.  The results were as expected; the meadows 

contained fewer saplings and seedlings and more herbaceous vegetation than the forests 

and shrub habitats.     

Observational study - buckthorn abundance by habitat and size class 

 The finding that buckthorn seedlings were more abundant than buckthorn saplings 

and trees was expected, as many seedlings do not survive to reach maturity.  The large 

difference between the abundance of seedlings and saplings/trees (Figure 5) suggests that 
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buckthorn seedling mortality is relatively high in these habitats.  Thus, buckthorn invasion 

may be most limited during colonization.  As buckthorn seeds are bird-dispersed (Godwin 

1943), the abundances and feeding preferences of avian populations and the availability of 

perch sites are likely to play an important role in determining buckthorn recruitment rates. 

 The lack of a difference in buckthorn abundance among habitats is likely due to 

selection bias.  Sites were chosen based on the presence of buckthorn populations, with 

preference given to areas within sites with greater buckthorn abundances.   

Observational study - litter decay rates by habitat and litter type 

 Buckthorn leaf litter had faster decay rates than a native leaf litter mix within all 

habitat types.  These results are similar to other decomposition studies, which also found 

that buckthorn litter had greater decomposition rates than native species litter, presumably 

due to the greater nitrogen content found in buckthorn litter (Heneghan et al. 2002, 

Heneghan et al. 2007).  Buckthorn invasion is associated with increased soil nitrogen, 

carbon, moisture, and pH and decreased soil carbon: nitrogen ratios (Heneghan et al. 2006).  

Based on these results, the sites in this study and similar buckthorn-invaded habitats are 

likely to have different soil characteristics than non-invaded areas.  The soil parameters 

measured in this study, soil moisture and soil organic matter, did not differ among the 

habitats.  This finding may be the result of buckthorn invasion.  However, the soil 

measurements were only taken once during the growing season, so it is possible that 

differences among the habitats occur at other time points.  Further research is needed, 

particularly comparisons of the soil characteristics of invaded and non-invaded areas.    
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Experimental study - buckthorn relative growth rates 

By separating the positive values from the total dataset, the effects of the 

experimental treatments on buckthorn seedling height and diameter accumulation were 

distinguished from the effects on height and diameter loss.  As this experiment took place in 

the field with many uncontrolled factors, using a dual approach allowed a greater 

understanding of the different stressors acting on the seedlings.  While buckthorn seedling 

height loss was greatest in the meadow habitats, seedlings had greater diameter growth in 

this habitat when nitrogen was added to plots.  These results indicate that habitat had the 

greatest effect on buckthorn seedling success of the experimental treatments, with the 

meadow habitats exerting different effects than the shrub and forest habitats. 

The increase in diameter RGRs in the nitrogen-addition treatment of the meadow 

habitats suggests that seedling growth was limited by nitrogen availability in the meadows.  

Although nitrogen addition led to increased diameter growth rates for seedlings in the 

meadow habitats, this boon did not lead to increased height growth rates.  It appears that 

other factors prevented these seedlings from increasing in height.  The pattern of height loss 

sheds light on this finding.  Seedlings in all competition and soil nutrient treatments in the 

meadow habitats had greater height loss than seedlings in the shrubs and forests.  In an 

experiment using seedlings transplanted into shade frames within its native range, 

buckthorn produced the greatest dry mass and shoot height in nutrient-rich soils with high 

light availability; however, herbivores were excluded, and water was not limited (Grubb et 

al. 1996).  In the present study, buckthorn’s ability to thrive in nutrient-rich environments 

with high light appeared to be limited or negated by herbivory and/or desiccation.  As the 

meadows had greater light levels than the shrubs and forests (Figure 13), desiccation may 
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have prevented height accumulation in the meadows.  While herbivory was not measured, 

many seedlings showed evidence of herbivory, such as being clipped at the base of the 

stem.  The clipping of seedlings at or near ground level is characteristic of herbivory by 

meadow voles (Microtus pennsylvanicus) (Ostfeld et al. 1997).  Meadow vole herbivory is 

more prevalent in old field habitats than forest edges, particularly in old fields dominated by 

herbaceous rather than woody vegetation (Ostfeld et al. 1997), as was the case for the 

meadow habitats in this study.  Also, herbivory by small mammals was the primary cause of 

mortality for buckthorn seedlings transplanted into old fields in central New York (Gill and 

Marks 1991).  Thus, it is likely that desiccation and herbivory prevented seedlings in the 

meadows from gaining a height advantage and, in fact, led to a greater decrease in height 

than seedlings in the other habitats.   

Experimental study - buckthorn biomass 

 The differences in buckthorn biomass ratios were concordant with the trends in 

seedling relative growth rates.   The lower biomass ratios in the meadow habitats were 

likely due to a combination of decreased nutrient availability (Brouwer 1962, Bloom et al. 

1985, Lambers and Poorter 1992, Olff 1992, Aerts and Chapin 1999) and water stress 

(Brouwer 1962, Bloom et al. 1985, Poorter and Nagel 2000).  In the meadows, the average 

biomass ratio was less than one, indicating that seedlings had greater belowground biomass 

than aboveground biomass.  Fast-growing species often respond to competition for 

belowground resources, particularly soil nitrogen, by increasing belowground biomass 

production (Brouwer 1962, Boot and den Dubbelden 1990, Lambers and Poorter 1992, Olff 

1992, Aerts and Chapin 1999).  As the addition of nitrogen led to greater stem-diameter 
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growth rates, it is reasonable to conclude that soil fertility limited seedling growth rates in 

the meadows to some extent.  Also, the greater rate of seedling height loss in the meadows 

probably contributed to the lower biomass ratios, as both herbivory and desiccation can 

cause large decreases in aboveground biomass.  Buckthorn seedling AG:BG biomass ratios 

were greater in the nitrogen-addition treatment across all habitats, indicating that 

aboveground biomass production was stimulated when nitrogen was added to soils.  

Buckthorn biomass ratios were also greater in the aboveground competition treatment than 

the no-competition treatment in all habitats.  Aboveground biomass production is a 

common response to the presence of aboveground competition for light (Bloom et al. 1985, 

Geber 1989, Olff 1992, Dudley and Schmitt 1996, Ballaré et al. 1997), so this finding is not 

unexpected.  It is interesting, however, that the competition and soil nutrient treatments 

affected seedling biomass ratios but not seedling height and diameter RGRs, except for 

increased diameter growth rates in the meadows.  These results suggest that any effects of 

the competition and soil nutrient treatments on seedling height and diameter were 

obscured or negated by stronger forces.  As discussed above, herbivory and desiccation 

appear to be the limiting factors in the meadows.  These factors were probably also at play 

in the shrubs and forests, although to a lesser extent.  Light availability may have also been a 

limiting factor in the shrub and forest habitats. 

Experimental study - buckthorn photosynthetic rate and PAR 

The greater photosynthetic rates and PAR availability found in the meadows 

demonstrate the importance of light availability for buckthorn photosynthesis.  PAR was 

approximately 1.5 times greater in the meadows on both measurement dates.  The 
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photosynthetic rates in the meadows were more than two times greater than those in the 

shrub habitats and more than three times greater than the forests.  Photosynthetic rates 

and PAR increased in all habitats later in the season.  While the increase in PAR on the 

second measurement date was greatest in the shrub habitat, the increase in photosynthesis 

was greatest in the forest.  Mean photosynthesis in the forests increased by 0.7 µmol CO2 m-

2 s-1, while mean PAR only increased by 17 µmol m-2 s-1.  Whereas in the shrubs, mean PAR 

increased by 127 µmol m-2 s-1, and mean photosynthesis only increased by 0.4 µmol CO2 m-2 

s-1.  A previous study found a positive correlation between buckthorn leaf nitrogen content 

and maximum photosynthetic rates in open hedgerow habitats, but not in forest habitats; in 

forests, photosynthetic rates were limited by light availability (Harrington et al. 1989).  In 

the same overall study, buckthorn had a greater aboveground growth rate in the open 

habitat than in the forest habitat (Harrington et al. 1989), demonstrating the interaction 

between light availability, nitrogen availability, photosynthetic rates, and buckthorn growth 

rates.  Seedlings in the meadow habitats in the present study, however, showed the 

opposite effect.  The open habitat in the experiment of Harrington et al. (1989a) was a 

hedgerow composed primarily of buckthorn, Lonicera X bella (Bell’s honeysuckle), gray 

dogwood, and Prunus serotina (black cherry).  This habitat most closely resembles the shrub 

habitats in the present study.  Based on the results of Harrington et al. (1989a), I would 

expect seedlings in the shrub habitats in the present study to have greater photosynthetic 

rates than those in the forest during the second measurement period due to the increased 

PAR availability at that time.  The lack of an increase in photosynthesis is puzzling, especially 

as neither the soil nutrients nor competition treatments had a significant effect on 

photosynthetic rates.  As the nitrogen-addition treatment in my study was applied in July, it 
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is possible that the effects of N-addition would not be apparent in September, which would 

explain why the soil nutrients treatment had no effect on photosynthesis in the shrublands 

on the second measurement date.  However, the shrub seedlings’ lack of response to 

increased light availability remains unexplained.   

The preexisting buckthorn populations in the shrub and forest habitats may have 

altered soil nitrogen levels prior to the initiation of this study.  As buckthorn invasion is 

associated with an increase in soil nitrogen (Heneghan et al. 2006, Klionsky et al. 2011), 

heavily invaded areas are likely to experience increases in nitrogen availability.  Adding 

nitrogen to the shrub and forest plots would not have influenced buckthorn growth rates if 

those soils were already at the level of saturation.   

PAR was greater in the sawdust-addition plots than the ambient and nitrogen-

addition plots during the summer.  The cause and implications of this result are unclear.  The 

addition of sawdust to plots may have caused a decrease in the aboveground biomass of 

competitors due to decreased nitrogen availability (Brouwer 1962, Boot and den Dubbelden 

1990, Lambers and Poorter 1992, Olff 1992, and Aerts and Chapin 1999), leading to an 

increase in PAR levels.  However, if this were so, it seems likely that this effect would have 

been present in the fall as well.  This finding may be the result of the chance positioning of 

the gas analyzer/PAR sensor.  It is also possible that bias was introduced into the positioning 

of the experimental plots such that the sawdust-addition plots had greater light availability.  

Synthesis of observational and experimental study results 

Knight et al. (2007) suggested that buckthorn may have an advantage within canopy 

gaps of forests due to the combined effects of buckthorn’s shade tolerance and 
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responsiveness to increased light availability.  Using the same line of reasoning, I 

hypothesized that buckthorn seedlings would perform better in shrub habitats than 

meadows or forests because shrublands offer an intermediate light environment with more 

protection from desiccation than meadows and greater light availability than forests.  While 

the shrub habitats in this study appeared to present an intermediate light environment, 

with similar PAR availability to the forests in the summer and greater PAR availability than 

the forests in the fall, buckthorn seedling growth rates were not greater in the shrub 

habitats.  The shrub and forest habitats had similar effects on buckthorn seedling growth 

and photosynthetic rates.  Additional light availability in the fall did not translate into an 

increase in height or diameter growth rates or even an increase in photosynthesis for 

seedlings in the shrub habitats.  There was no difference in soil moisture levels or soil 

organic matter content between the shrub and forest habitats, so it is unlikely that 

photosynthetic rates were limited by these factors.  Nor was there a difference in 

photosynthetic rates among the soil nitrogen treatments, suggesting that photosynthesis 

was not limited by nitrogen availability.  It appears that the seedlings in the shrub habitats 

were unable to respond effectively to the increased light availability due to biological 

constraints, such as leaf-level photosynthetic capacity or leaf area index (LAI), rather than 

environmental conditions.  Previous studies found that increased light availability was 

correlated with increased aboveground biomass production in buckthorn shrubs (Harrington 

et al. 1989b) and seedlings (Grubb et al. 1996).  While the seedling biomass ratios measured 

in this study were altered by the competition treatments, greater light availability did not 

lead to a concrete increase in biomass.  The seedlings in this experiment were transplanted, 

which may have limited the seedlings’ ability to respond to increased light availability by 
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decreasing the overall health of the plants and limiting leaf production and/or leaf longevity.  

Buckthorn shrubs growing in Wisconsin retained their leaves until mid-November 

(Harrington et al. 1989a), but in the present study most seedlings had few leaves remaining 

by September, when the second photosynthesis measurement was taken.              

Competition had no effect on buckthorn growth or photosynthesis in this 

experiment.  A previous study measuring the effects of aboveground and belowground 

competition on the growth of transplanted seedlings in abandoned agricultural fields in 

central New York found that buckthorn biomass was greater in the absence of competition 

and greater in plots with only belowground competition than in plots with only 

aboveground competition (Gill and Marks 1991).  The lack of an effect in my experiment 

may have been the result of the experimental conditions and/or study duration.  Gill and 

Marks (1991) used a combination of physical partitions and herbicide application to achieve 

their competition treatments.  Due to the scale of this experiment and land-use restrictions, 

the use of physical partitions and chemical application was not feasible.  The manual 

methods employed in this study may not have been sufficient to separate competitive 

effects.  Also, Gill and Marks (1991) performed their study over two growing seasons, 

whereas my study took place over a single growing season.  Competition may have become 

more important to seedling performance if my study had been extended, especially if the 

negative effects of transplanting decreased seedling growth and survival.   

Another confounding factor in the competition treatment was the difference in plot 

competitors among the habitats.  Seedlings in the meadow habitats were more likely to be 

competing with grasses and herbaceous species, whereas seedlings in the shrub and forest 

habitats were competing with a mixture of herbaceous and woody species that was often 
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dominated by buckthorn.  Thus, intraspecific competition was more frequent in the shrub 

and forest habitats, and interspecific competition was more frequent in the meadow 

habitats.  Some researchers have suggested that buckthorn shrubs may facilitate the growth 

of buckthorn seedlings (Kollmann and Grubb 1999, Knight 2006), however there is evidence 

that inhibition may also occur (Gourley 1985).  The conflation of intraspecific and 

interspecific competition and herbaceous and woody competitors may have decreased the 

probability of detecting the effects of competition on buckthorn seedling growth, 

particularly if conspecific facilitation was occurring. 

While light availability differed among habitats, the competition treatments had no 

significant effect on PAR levels.  As the competition treatments were applied to separate the 

effects of competition for light from competition for belowground resources, this result 

indicates that the competition treatments did not alter light availability as intended.  

Therefore, any differences among competitive effects were not detectable.  The large 

difference in light availability among the habitats may have obscured differences in light 

availability among the competition treatments.  However, these findings indicate that 

caution should be used when interpreting the experimental results.  The apparent lack of an 

effect of competition on buckthorn seedling growth may be the result of the experimental 

conditions rather than environmental or physiological effects.  As PAR was measured in only 

a subset of the plots on two measurement dates, the lack of a difference among the 

competition treatments in PAR values is not necessarily proof that the treatments were not 

effective.  The biomass ratios of the seedlings did show a response to the competition 

treatments, with greater belowground biomass production when competitors were 

removed from plots and greater aboveground growth in plots with aboveground 
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competitors.  These results represent typical growth responses to the absence and presence 

of competitors, lending support to the conclusion that the competition treatments were at 

least somewhat effective.  The relatively short duration of the experiment may have limited 

the effects of the competition treatments on buckthorn growth rates.  A single growing 

season may not have been adequate to produce detectable differences in growth rates.   

I hypothesized that buckthorn would gain a competitive advantage in low fertility 

habitats due to the decreased competitive effects of neighboring plants associated with low 

fertility environments.  The results of the soil nutrients treatment in this experiment did not 

support my hypothesis.  In fact, for seedlings with positive growth rates, soil nutrient levels 

interacted with habitat such that seedlings in the meadow habitats had greater diameter 

growth rates when nitrogen fertilizer was added to soils, while competition had no effect on 

growth rates.  This result suggests that soil fertility is more important than competition for 

buckthorn diameter growth but only within high light environments.  A study measuring the 

effects of light and nutrient availability on the growth of 10 woody species found that most 

of the species, including buckthorn, only responded to increased nutrient availability in at 

least moderately high light environments (Grubb et al. 1996).  Meadow habitats, therefore, 

may be more susceptible to buckthorn establishment than shrub or forest habitats in the 

presence of increased soil nitrogen due to the greater light availability in meadows.   

Buckthorn management 

Based on the results of this study, different buckthorn management strategies may 

be necessary for meadows than shrub or forest habitats.  In environments with both high 

light availability and high soil nitrogen levels, such as heavily invaded or anthropogenically 
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altered meadows, management strategies that focus on decreasing soil fertility may 

decrease buckthorn’s success by limiting its competitive advantage.  Previous studies have 

shown that native grasses and/or forbs can outcompete or limit the growth of buckthorn in 

both early-successional old fields and forested habitats (Gill and Marks 1991, Willert 2000, 

Knight 2006).  Management efforts with a focus on returning the soil nitrogen content to 

historical levels may give native species sufficient advantage to outcompete buckthorn 

seedlings during establishment, thereby limiting the need for costly and labor-intensive 

buckthorn removal activities.   

 Despite the greater light availability, buckthorn seedlings were less successful in the 

meadow habitats than the shrub or forest habitats.  Herbivory and desiccation appeared to 

limit the seedlings’ growth.  Thus, invaded meadows are potentially less likely to support 

large buckthorn populations and may be less of a priority for management than shrub or 

forest habitats.  However, buckthorn can still establish and attain maturity in meadows.  

While single or small numbers of individuals are unlikely to exert ecosystem-level effects, 

these individuals can act as seed sources for surrounding areas that are more vulnerable to 

buckthorn invasion. 

For all habitat types, the removal of well-established individuals could limit the 

establishment of buckthorn seedlings and perhaps prevent buckthorn dominance.  Also, as 

buckthorn is dioecious (Godwin 1943), the strategic removal of fruiting trees could be used 

in conjunction with other methods to reduce buckthorn reproduction and establishment 

(Archibold et al. 1997).   

Differences in buckthorn distribution patterns among habitats may also affect 

management strategies.  A study of the distribution of buckthorn in old fields, maple-beech 
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forests, and conifer plantations found that buckthorn seedling populations in old fields 

tended to be concentrated near mature buckthorn trees, whereas in the maple-beech 

forests, buckthorn was limited to canopy gaps and trail edges (McCay et al. 2009).  

Buckthorn seedling density increased with light availability in the two forest habitats (McCay 

et al. 2009).  Another study also found that buckthorn cover in forested habitats increased 

with light availability (Knight and Reich 2005).  Thus, for shrub and forest habitats, it may be 

more fruitful to focus management efforts on disturbed areas, such as canopy gaps and 

trails, and areas with greater light availability, such as forest edges, because these locations 

are more likely to be invaded.  In meadow habitats, targeting mature buckthorn trees for 

removal may be a more effective strategy. 

As competition and soil nutrient treatments had no effect on buckthorn growth 

rates in the shrub and forest habitats, management strategies based on restoring historical 

soil fertility levels or planting native competitors to reduce buckthorn dominance are not 

indicated.  As other studies have found a positive relationship between buckthorn 

abundance and light availability in forested habitats (Knight and Reich 2005, McCay et al. 

2009), management promoting mid- and late-successional canopy forest species, 

particularly evergreen species, may limit buckthorn establishment and growth.  However, 

buckthorn’s shade-tolerance and responsiveness to light (Harrington et al. 1989b, Grubb et 

al. 1996) limit the effectiveness of this strategy.  Additionally, in heavily invaded forests, 

buckthorn can alter stand characteristics, potentially halting succession (Mascaro and 

Schnitzer 2007, 2011).  Buckthorn-dominated forests are likely to require highly intensive 

management over a number of years, underscoring the importance of monitoring and 

decisive action in areas with low-to-moderate buckthorn populations.   
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Conclusions 

 Buckthorn is a frequent invader within the northern and central United States and 

southern and eastern Canada that can cause both community (Klionsky et al. 2011, Mascaro 

and Schnitzer 2011) and ecosystem effects (Heneghan et al. 2006, Heneghan et al. 2007, 

Madritch and Lindroth 2009).  This project included an observational study of vegetation 

and soil characteristics in buckthorn-invaded habitats and an experimental study using a 

factorial design to separate the effects of habitat, competition, and soil nutrient availability 

on buckthorn seedling growth rates, biomass allocation, and photosynthetic rates.  In the 

observational study, buckthorn abundances did not differ by habitat type.  In the 

experimental study, however, habitat type exerted the strongest effects on buckthorn 

seedling height and diameter relative growth rates and biomass ratios, with greater height 

loss and greater allocation to belowground biomass in the meadows.  This effect may be 

due to seedling herbivory by meadow voles and desiccation.  On average, seedlings 

displayed negative growth rates in all habitats.  When only seedlings with positive growth 

rate values were analyzed, the addition of nitrogen fertilizer resulted in increased diameter 

growth rates in the meadow habitats.  This result suggests that the meadow habitats were 

N-limited, but the effects of nitrogen limitation were overshadowed by herbivory and 

desiccation.  Based on these findings, buckthorn management efforts should focus on shrub 

and forest habitats.  Management practices relying solely on the planting of native 

competitors or alteration of soil nutrient levels are unlikely to lead to significant reductions 

in buckthorn seedling growth.  Light availability may be more important to buckthorn 

success in shrub and forest habitats, which had significantly lower photosynthetic rates and 

PAR levels than the meadows.  As such, buckthorn control efforts should focus on areas 
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within shrub and forest habitats with greater light availability, such as canopy gaps, trails, 

and other disturbed areas, for monitoring and removal activities. 
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Figures 

 

Figure 1.  Map of six sites in New York used in a study measuring the effects of competition, 

soil fertility, and habitat on invasive Rhamnus cathartica growth and photosynthesis.  The 

sites were Hunters Creek County Park, Erie County (HuntersCreek); Iroquois National 

Wildlife Refuge, Orleans County (Iroquois); Isaac Gordon Nature Park, Monroe County 

(IsaacGordon); Knox Farm State Park, Erie County (KnoxFarm); Montezuma National Wildlife 

Refuge, Seneca County (Montezuma); and Northern Montezuma Wildlife Management 

Area, Cayuga County (NMWMA).   
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Figure 2.  Seedling abundance (mean ± SE) in three habitats measured in an observational 

study at six sites in western New York between September and October 2013.  A one-way 

ANOVA (F2,13 = 11.540, p = 0.001) was performed on the log-transformed data.  The 

untransformed data are shown above.  Letters indicate significant differences.   
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Figure 3.  Sapling abundance (mean ± SE) in three habitats measured in an observational 

study at six sites in western New York between September and October 2013.  A one-way 

ANOVA (F2,11 = 8.574, p = 0.006) was performed on the log-transformed data to measure the 

effect of habitat on sapling abundance.  The untransformed data are shown above.  Letters 

indicate significant differences.   
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Figure 4.  Herbaceous vegetation percent cover (mean ± SE) in three habitats analyzed using 

a one-way ANOVA (F2,15 = 14.216, p < 0.001, α = 0.025).  Herbaceous vegetation was 

measured during an observational study at six sites in western New York in September and 

October 2013.  Letters indicate significant differences.   
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Figure 5.  Buckthorn abundance (mean ± SE) by size class measured during an observational 

study at six sites in western New York in September and October 2013.  A two-way ANOVA 

(F2,19 = 34.664, p < 0.001) comparing the effects of habitat and size class on buckthorn 

abundance was performed using log-transformed data.  The untransformed data are shown 

above.  Letters indicate significant differences.  Note the logarithmic scale of the y-axis. 
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Figure 6.  Effect of leaf litter type on decay rate (mean ± SE) measured during an 
observational study using mesh litterbags deployed in six sites in western New York from 
April to December 2013.  A two-way ANOVA (F1,30 = 46.215, p < 0.001) comparing the effects 
of habitat and litter type on decay rates was performed using transformed data (square root 
of decay rate multiplied by negative one).  The untransformed data are shown above.  
Letters indicate significant differences.   
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Figure 7.  Buckthorn seedling diameter relative growth rates (RGR) (mean ± SE) of the 

habitat and soil nutrient interaction term for seedlings exhibiting positive growth (negative 

values excluded).  A three-way ANOVA (α = 0.05) was used to compare the effects of 

habitat, competition, and soil nutrient levels on diameter RGRs of buckthorn seedlings in an 

experimental study in six sites in western New York.  Habitat had a significant effect on 

diameter RGR within the nitrogen fertilizer level of the soil nutrients treatment (F2,102 = 7.40, 

p = 0.001).  Letters indicate significant differences.   
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Figure 8.  Buckthorn seedling height relative growth rates (RGR) (mean ± SE) measured in 

three habitats during an experimental study in six sites in western New York from July to 

December 2013.  A three-way ANOVA (F2,135 = 11.857, p > 0.001, α = 0.025) was used to 

compare the effects of habitat, competition, and soil nutrient levels on height RGRs of 

transplanted buckthorn seedlings.  Letters indicate significant differences.   
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Figure 9.  Main effects of the habitat treatment in a three-way ANOVA (F2,127 = 4.749, p = 

0.010) comparing the aboveground: belowground biomass ratios (mean ± SE) of buckthorn 

seedlings exposed to habitat, competition, and soil nutrient treatments during an 

experimental study at six sites in western New York from July to December 2013.  Letters 

indicate significant differences (α = 0.025).   
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Figure 10.  Main effects of the competition treatment in a three-way ANOVA (F2,127 = 5.917, 

p = 0.003) comparing the aboveground: belowground biomass ratios (mean ± SE) of 

buckthorn seedlings exposed to habitat, competition, and soil nutrient treatments during an 

experimental study at six sites in western New York from July to December 2013.  Letters 

indicate significant differences (α = 0.025).   
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Figure 11.  Main effects of the soil nutrient treatment in a three-way ANOVA (F2,127 = 5.483, 

p = 0.005) comparing the aboveground: belowground biomass ratios (mean ± SE) of 

buckthorn seedlings exposed to habitat, competition, and soil nutrient treatments during an 

experimental study at six sites in western New York from July to December 2013.  Letters 

indicate significant differences (α = 0.025).   

 

 

 

 

 

 

  

   a  a 

 b 



54 
 

 

Figure 12.  Net photosynthetic rate (mean ± SE) of buckthorn seedlings by habitat and 

measurement date.  Transplanted buckthorn seedling photosynthesis was measured using a 

leaf chamber attached to a portable CO2 analyzer during an experimental study at six sites in 

western New York.  The two measurement periods were analyzed separately using two 

three-way ANOVAs (July – August 2013:  F2,134 = 12.336, p < 0.001, α = 0.025; September 

2013:  F2,135 = 15.067, p < 0.001, α = 0.025).  Significant differences are indicated by letters.   
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Figure 13.  Photosynthetically active radiation (PAR) levels (mean ± SE) in three habitats on 

two measurement dates.  PAR was measured using a light sensor on the outside of a leaf 

chamber attached to a portable CO2 analyzer during an experimental study at six sites in 

western New York.  The two measurement periods were analyzed separately using two 

three-way ANOVAs (July – August 2013:  F2,134 = 89.811, p < 0.001, α = 0.025; September 

2013:  F2,135 = 45.612, p < 0.001, α = 0.025).  Both datasets were log-transformed for 

analysis; the untransformed data are shown above.  Significant differences are indicated by 

letters.   
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Figure 14. Photosynthetically active radiation (PAR) levels (mean ± SE) measured in 

experimental plots exposed to three soil nutrient treatments (FS = sawdust, F0 = control, FN 

= nitrogen fertilizer).  PAR measurements were taken using a light sensor outside a leaf 

chamber attached to a portable CO2 analyzer in July and August 2013 at six sites in western 

New York.  Data were log-transformed and analyzed with a three-way ANOVA (F2,134 = 5.773, 

p = 0.004, α = 0.025); the untransformed data are shown above.  Significant differences are 

indicated by letters.   
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Tables 

 

Table 1.  Effect of habitat on soil moisture (%), loss on ignition (g/kg), sapling diameter at 

breast height (DBH) (cm), tree abundance (individuals/ha), and tree DBH (cm) as measured 

using one-way ANOVAs for each variable.  Variables were measured in an observational 

study in six sites in western New York in September and August 2013.   

Variable 

One-way ANOVA results 

for habitat treatment Transformation Alpha 

df F P 

Soil moisture 2 0.068 0.934 None 0.05 

LOI 2 0.314 0.735 None 0.05 

Sapling DBH 2 0.763 0.489 None 0.05 

Tree abundance 2 4.695 0.034 Logarithm 0.025 

Tree DBH 2 1.039 0.386 None 0.05 
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Table 2.  Mean (± SE) soil moisture, loss on ignition (LOI), sapling diameter at breast height 

(DBH), tree abundance, and tree DBH values in meadow, shrub, and forest edge habitats 

measured in an observational study in September and October 2013 at six sites in western 

New York.  Habitat had no significant effect on any of these parameters. 

Habitat 
Soil moisture 

(%) 
LOI (g/kg) 

Sapling 

DBH (cm) 

Tree 

abundance 

(#/ha) 

Tree DBH 

(cm) 

Meadow 31.30 ± 3.89 71.83 ± 12.01 6.12 ± 1.68  67 ± 30 21.50 ± 4.75 

Shrub 32.31 ± 2.40 73.39 ± 11.69 5.01 ± 0.55 711 ±287 21.72 ± 1.59 

Forest 32.90 ± 2.95 84.71 ± 13.83 6.05 ± 0.66 756 ± 171 27.96 ± 4.24 
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Table 3.  Results of two three-way ANOVAs measuring effects of habitat, competition, and 

soil nutrients on buckthorn seedling height (HRGR) and diameter (DRGR) relative growth 

rates for seedlings displaying positive height and diameter growth values.  Measurements 

were taken between July and December 2013 during an experimental study on buckthorn 

seedlings transplanted into six sites in western New York.  (*α = 0.025, †α = 0.05) 

  
HRGR (Positive 

values) 
 

DRGR (Positive 

Values) 

Source df F P* df F P† 

Overall Model 24 0.714 0.806 26 1.29 0.188 

Main effects 

Habitat (HBT) 2 1.609 0.214 2 7.19 0.001 

Competition (COMP) 2 1.743 0.189 2 0.41 0.662 

Soil Nutrients (SN) 2 0.743 0.482 2 0.77 0.465 

Interactions 

HBT X COMP 4 0.192 0.941 4 0.36 0.835 

HBT X SN 4 0.465 0.761 4 2.69 0.036 

COMP X SN 4 0.796 0.535 4 0.87 0.484 

HBT X COMP X SN 6 0.453 0.838 8 0.78 0.622 

 

 

  



60 
 

Table 4.  Results of two three-way ANOVAs (α = 0.025) measuring effects of habitat, 

competition, and soil nutrients on buckthorn seedling height (HRGR) and diameter (DRGR) 

relative growth rates for seedlings displaying both positive and negative height and 

diameter growth values.  Measurements were taken between July and December 2013 

during an experimental study on buckthorn seedlings transplanted into six sites in western 

New York.  Both datasets were transformed prior to performing ANOVAs. 

  HRGR (All values) DRGR (All values) 

Source df F P F P 

Overall Model 26 2.083 0.004 0.308 1.000 

Main effects 

Habitat (HBT) 2 11.857 < 0.001 0.260 0.772 

Competition (COMP) 2 2.418 0.093 0.479 0.620 

Soil Nutrients (SN) 2 0.600 0.550 0.579 0.562 

Interactions 

HBT X COMP 4 1.678 0.159 0.425 0.790 

HBT X SN 4 0.930 0.449 0.180 0.948 

COMP X SN 4 1.325 0.264 0.053 0.995 

HBT X COMP X SN 8 1.085 0.378 0.341 0.948 
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Table 5.  Results of a three-way ANOVA (α = 0.025) measuring the effects of habitat, 

competition, and soil nutrient levels on the ratio of aboveground to belowground biomass 

of buckthorn seedlings in an experimental study at six sites in western New York from July to 

December 2013.   

AG:BG biomass 

Source df F P 

Overall Model 26 1.956 0.007 

Main effects 

Habitat (HBT) 2 4.749 0.010 

Competition (COMP) 2 5.917 0.003 

Soil Nutrients (SN) 2 5.483 0.005 

Interactions 

HBT X COMP 4 0.970 0.426 

HBT X SN 4 1.494 0.208 

COMP X SN 4 1.237 0.298 

HBT X COMP X SN 8 0.470 0.875 
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Table 6.  Results of two three-way ANOVAs (α = 0.025) measuring effects of habitat, 

competition, and soil nutrient levels on net photosynthetic rates of buckthorn seedlings 

measured in July and August 2013 (PS Pre) and September 2013 (PS Post) before and after 

the addition of fertilizer to the plots.  Seedlings were part of an experimental study in six 

sites in western New York. 

  PS Pre PS Post 

Source df F P F P 

Overall Model 26 2.144 0.003 2.012 0.005 

Main effects 

Habitat (HBT) 2 12.336 < 0.001 15.067 < 0.001 

Competition (COMP) 2 0.779 0.461 1.781 0.172 

Soil Nutrients (SN) 2 0.262 0.771 2.719 0.070 

Interactions 

HBT X COMP 4 1.742 0.144 0.402 0.807 

HBT X SN 4 0.484 0.747 0.904 0.464 

COMP X SN 4 1.476 0.213 0.797 0.529 

HBT X COMP X SN 8 1.746 0.093 0.595 0.781 

 

 

 

  



63 
 

Table 7.  Results of two three-way ANOVAs (α = 0.025) comparing photosynthetically active 

radiation (PAR) levels outside a leaf chamber while measuring photosynthetic rates of 

buckthorn seedlings exposed to habitat, competition, and soil nutrient level treatments.  

PAR was measured in July and August 2013 (PAR Pre) and September 2013 (PAR Post) in an 

experimental study at six sites in western New York before and after the addition of 

fertilizer to the plots.  Both datasets were log-transformed for analysis. 

  PAR Pre PAR Post 

Source df F P F P 

Overall Model 26 8.146 < 0.001 4.323 < 0.001 

Main effects 

Habitat (HBT) 2 89.811 < 0.001 45.612 < 0.001 

Competition (COMP) 2 1.917 0.151 1.382 0.255 

Soil Nutrients (SN) 2 5.773 0.004 1.592 0.207 

Interactions 

HBT X COMP 4 0.775 0.544 0.973 0.425 

HBT X SN 4 0.391 0.815 0.184 0.946 

COMP X SN 4 0.398 0.810 1.352 0.254 

HBT X COMP X SN 8 1.351 0.224 0.648 0.736 

 

 

 

 

 

 


