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Abstract 

 In the United States mathematically gifted students frequently go unnoticed and 

most often receive the same education as their at-level peers (Ysseldyke, Tardrew, Betts, 

Thill, Hannigan, 2004).  There is very limited funding available for gifted students and 

the identification and classification varies by state, often being decided by school district 

(National Association, 2014).  Gifted American students are exposed to less challenging 

problems than those in other countries and, as a result, are falling behind in academic 

performance (Ross, 1993). This curriculum is designed to supplement the existing 

Geometry curriculum by offering eight unique, challenging problems that can be used for 

gifted students in either heterogeneous or homogenous groups.  The purpose of this 

curriculum project is to provide problems to support teachers in their instruction of gifted 

students so that these students are challenged by curriculum in a rigorous unit of 

mathematical material.  
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Chapter 1: Introduction 

 The United States (US) Department of Education defined gifted students to be 

“children and youth with outstanding talent who perform or show the potential for 

performing at remarkably high levels of accomplishment when compared with others of 

their age, experience, or environment” (Ross, 1993). In the United States, the 

classification and treatment of gifted students is at the discretion of each state, with no 

federal mandates or funding (National Association, 2014).  In the 2013-2014 school year 

fourteen states did not provide any funding for gifted students and twenty-two states left 

all decisions about gifted students to the discretion of the school district (National 

Association, 2014).  New York State defines gifted students as:  

those who show evidence of high performances capability and exceptional 

potential in area such as general intellectual ability, special academic aptitude and 

outstanding ability in visual and performing arts. Such definition shall include 

those pupils who require educational programs or services beyond those normally 

provided by the regular school program in order to realize their full potential 

(New, 2009).  

New York State does provide funding for gifted education and requires screening in 

school, including testing to determine whether a student fits under the definition of gifted, 

however the “the definition permits each district to determine the kinds of data to be used 

and procedures to be followed in identifying gifted students” (New, 2009). 

Because of the broad definition and procedure for determining giftedness in the 

United States, gifted students are most often taught in the general education classroom 

and the majority of the time, the education they receive is not any different than their at- 

or below- level peers.  Because these students have no problem succeeding in the general 
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education classes, and often exceed expectations, the pitfalls of this method of educating 

them often go unnoticed.  Research shows, however, that gifted students should receive 

an education that caters to their learning styles and learning needs (Ysseldyke, Tardrew, 

Betts, Thill, Hannigan, 2004).  Gifted students often receive the exact same assignments 

as their peers, not being challenged in the way that they should and instead, “gifted 

students should be provided advanced learning activities.  This is especially important in 

the domain of mathematics” (Ysseldyke, Tardrew, Betts, Thill, Hannigan, 2004, p. 295).  

Ibata-Arens (2012, p. 3) compared the education of gifted students in various countries in 

Asia to the gifted education in the United States.  She claims that “the needs of U.S. 

gifted and talented students (are) not being met with the current practice.” 

 The curriculum created in this study is designed for high school sophomores and 

aims to provide varied curriculum support for teachers of gifted students in 

heterogeneous classrooms. Wai, Lubinski, Benbow, & Steiger (2010) discuss two main 

ways to challenge gifted students: exposure to many different topics and an in-depth look 

at curriculum. Although acceleration is one way to ensure that students are exposed to a 

large variety of mathematical content, enrichment is just as, if not more, important.  

“Speeding up learning and not going deeper or making it more complex would seem 

empty” (Wai, Lubinski, Benbow, & Steiger, 2010, p. 860).  The curriculum is designed to 

supplement existing Geometry curriculum, allowing students to take a more in-depth look 

at the content, by designing challenging problems that require higher-level thinking.  

Although it is designed to be implemented in a separate lab class for gifted students, it 

can easily be used as a modification for a heterogeneous class of general education 

students that contains gifted students.   
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 The purpose of this curriculum project is to provide problems to support teachers 

in their instruction of gifted students so that these students are challenged by curriculum 

in a rigorous unit of mathematical material, where students work to solve complex 

mathematical problems in which the method of solving the problems is not obvious, all of 

the necessary information is not just given to the students and where there is more than 

one correct answer and correct method of solving the problem. 
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Chapter 2: Survey of Literature 

Introduction 

 Much research has been done in the area of gifted students in mathematics (Ibata-

Arens, 2012, Winner, 1996, Ross, 1993).  Researchers have analyzed how the United 

States compares to other counties in gifted education students’, teachers’ and parents’ 

perceptions on how to best help gifted students succeed in school, and the success of 

gifted students beyond high school (Ibata-Arens, 2012). With the ever growing need for 

highly qualified workers in science, technology, engineering, and mathematics (acronym: 

STEM) fields, much research also focuses on the lack of students, particularly those 

gifted in mathematics, pursuing degrees in STEM fields and how educators can combat 

that issue (Wai, Lubinski, Benbow, & Steiger, 2010). 

 

Comparison of the United States and Other Nations 

 Ibata-Arens (2012) found the education of gifted students in the United States to 

be lacking, particularly in the area of mathematics. Ellen Winner (1996) found that “only 

2 cents of every $100 spent on precollegiate education in 1990 went to gifted programs” 

(Winner, 1996).  Unfortunately, with No Child Left Behind (NCLB) and the 

implementation of the Common Core State Standards (CCSS) there have been no 

significant changes in gifted education since the 1990s.   Ibata-Arens referred to a report 

published in 1993 called “National Excellence: a Case for Developing America’s Talent,” 

which compared the education of gifted students in the United States to those in China, 

Taiwan and Japan, and states that nearly two decades later, nothing has changed (Ibata-

Arens, 2012). O’Connell Ross et al., (1993) claims that although the insufficiency of 
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gifted education in the United States is a known problem, not much has been done to 

solve it.  Most gifted students are educated in general education classrooms with no 

particular attention paid to their needs.  In comparison to other countries, the authors 

claim that  

“Most top students in the United States are offered a less rigorous curriculum,  

read fewer demanding books, complete less homework, and enter the work force  

or postsecondary education less well prepared than top students in many other  

industrialized countries.  These deficiencies are particularly apparent in the areas  

of mathematics and science” (Ross, 1993) 

 

Numerous studies have shown that these problems in American education lead to 

low test results compared to other countries.  In 2011 the Trends in Mathematics and 

Science Study (acronym: TIMSS) ranked the United States as eleventh out of seventy in 

fourth grade mathematics and ninth out of seventy in eighth grade mathematics (Mullis, 

Martin, Foy, & Arora, 2012).  Arguments can be made that this study is not a fair 

comparison since the United States often has a higher percentage of their students taking 

higher levels of mathematics, but even the top American students fall short of the top 

students in other countries. Data from Advanced Placement tests, which have remained 

relatively consistent over time in terms of difficulty, have shown the shortcomings of the 

highest achieving American students.  When comparing the top one percent of American 

students to the top one percent of students from thirteen other nations, American students 

ranked last in algebra and twelfth in geometry and calculus (Ross, 1993).  As a more 

recent study, the National Math and Science Initiative (2014) also points to disturbing 

data.  In a ranking constructed by the Organization for Economic Cooperation and 
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Development, the United States ranked 27
th

 out of 34
th

 in mathematics, while the World 

Economic Forum ranked the United States as 48
th

 in the world in quality math instruction 

(National, 2014).   

 It was found that American students do not spend as much time in school, do not 

get as much homework and are not exposed to challenging problems as often as students 

in other countries (Ross, 1993).  Although teachers do not have control over the length of 

the school day, they do have control over the other two discrepancies.  Teachers can 

change the amount of homework that they assign, but there is conflicting research about 

the true benefits of homework (Marzano & Pickering, 2007).  Teachers should instead 

focus on exposing their students to challenging problems.  Shoenfeld (1992) argues that 

often times teachers misuse the term problem solving, claiming that routine practice 

questions are problem solving.  He instead claims that true problem solving involves 

questions that are difficult and perplexing.  Sharma (2013) adds to Shoenfeld’s notion 

that problem solving should be non-routine, arguing that effective problems have more 

than one method of solving them and often more than one solution.  In order for students 

to truly learn from problem solving, they should not be given all relevant information and 

should, instead, learn to ask the right questions to get all the information that they need 

(Sharma, 2013).  Every student should be given a chance to work on problems that 

require higher-level thinking, but this is especially important for gifted students.  

 

The Lack of American Students Choosing STEM Fields 

While the disparities between students in the United States and other countries are 

disturbing, an even bigger problem is the lack of American students pursuing STEM 
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careers.  While students in countries throughout the world continue to increase their focus 

on STEM fields, the United States is falling behind.  With the aforementioned troubles in 

precollegiate education of gifted students in the United States, particularly in science and 

mathematics, it’s no wonder that American students do not choose STEM majors in 

postsecondary school (National 2014).   In other countries, mathematically gifted 

students are making breakthroughs in STEM fields, but in the United States, even when 

students do major in a math field, it is often business related (Nokelainen, Tirri, 

Campbell, 2004).  Because of the poor quality of mathematics education and the lack of 

students pursuing STEM degrees, the National Math and Science Initiative claims the 

United States could be short as many as three million highly qualified workers by 2018 

(National, 2014).    

 Jonathan Wai, David Lubinski, Camilla Benbow and James Steiger (2010) studied 

the precollegiate education and experiences of individuals who became successful in 

STEM fields.  They found a direct correlation between students’ exposure to STEM 

fields in primary and secondary school and their success in STEM career fields.  “The 

number of precollegiate STEM educational opportunities beyond the norm that 

mathematically talented adolescents experience is related to subsequent STEM 

accomplishments achieved over 20 years later” (Wai, Lubinski, Benbow, & Steiger, 

2010, p. 865).  The authors referred to these educational opportunities as “educational 

dose,” and found that a higher mathematical educational dose in secondary schools led to 

postcollegiate success in STEM fields.    

 The lack of students pursuing degrees and careers in STEM fields is problematic.  

American STEM companies are forced to hire individuals from other countries, not 
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because they are necessarily more talented, but because they are better educated and the 

U.S. has a shortage of qualified individuals.  Clearly, something needs to be done to 

combat this dilemma, but with much educational focus on the Common Core Curriculum, 

gifted students will most likely continue to see a lack of funding and a lack of 

government mandates.  It is the job of teachers to ensure that all students are challenged.  

The curriculum in this paper is designed to offer free unique learning opportunities for 

gifted students in mathematics, exposing them to rich and new material, and showing 

them the usefulness of mathematics.   

 

Women Are Underrepresented in STEM Fields 

Among those that do choose STEM fields, women are underrepresented.  

Margaret O’Shea, Nancy Heilbronner, and Sally Reis (2010), studied this phenomenon 

and found that in 2005, women received over half of all bachelor’s degrees (58%) and 

master’s degrees (59%), but they only received 46% of undergraduate degrees in 

mathematics and even less in computer science, physics and engineering (O’Shea, 

Heilbronner, &Reis, 2010).  Additionally, the National Math and Science Initiative 

recognizes that women hold 48% of all jobs, but only 24% of STEM jobs (National, 

2014).  

 

Characteristics of Highly Effective Teachers of Gifted Students  

 In order to offer a rich, deep and unique curriculum to gifted students in 

mathematics, teachers need to be well educated (Sigle, DeVia Rubenstein, & Mitchell, 

2013).  Not only should they be knowledgeable about the content that they teach, they 
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also need to ensure that they understand the pedagogy behind successfully teaching and 

challenging gifted students.   

Research states that there are three main characteristics of teachers of gifted 

students (Sigle, DeVia Rubenstein, & Mitchell, 2013).  First and foremost, teachers must 

have an in-depth understanding of the content that they teach.  Although we know that 

content knowledge is important for teachers of all students, it is especially important for 

teachers of the gifted.  Teachers need to be able to answer student questions and 

challenge learners with examples beyond the level of the textbook.  Del Sigle, Lisa 

DeVia Rubenstein, and Melissa S. Mitchell (2013) interviewed gifted students enrolled in 

college honors programs and found that students desired teachers who had a superior 

knowledge of the content, were able to apply it to genuine real-world situations, were 

“lifelong learners” and had enthusiasm for the subject matter that they taught (Siegle, 

DeVia Rubenstein, & Mitchell, 2013, p. 37).   

 The second characteristic that gifted students valued in their teachers was a caring 

attitude (Sigle, DeVia Rubenstein, & Mitchell, 2013).  Students appreciated teachers who 

took an interest in them and cared about their being successful.  Genuine care and 

concern for the students is often more important than content knowledge or pedagogy 

itself (Siegle, DeVia Rubenstein, & Mitchell, 2013).   

 Finally, students cared about having teachers who understood pedagogy.  They 

found that it did not matter which teaching style their teacher used, as long as he or she 

was good at that style of teaching.  They also preferred that their teachers had high 

expectations for them.  If expectations were low, students would do “enough” to get by, 
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but if expectations were high, students would rise to the challenge and would, in the end, 

learn more (Siegle, DeVia Rubenstein, & Mitchell, 2013).   

 

Using Problem Solving to Challenge Gifted Students  

 Research on gifted education in mathematics demonstrates the need for students 

to be exposed to a variety of problems, particularly challenging problems that go beyond 

the normal curriculum (Ysseldyke, Tardrew, Betts, Thill, & Hannigan, 2004, p. 293).  

John Threlfall and Melanie Hargreaves (2008) discuss the differences between gifted 

mathematicians and their average peers.  They found that gifted students “have a broader 

and more inter-connected knowledge base, are quicker at solving problems, while 

spending more time planning…are more flexible in their use of strategies, [and] prefer 

complex, challenging problems” (Threlfall & Hargreaves, 2008, p. 84).  We would be 

doing a disservice to our students if we ignored these skills and desires. 

 Yogesh Sharma (2013) studied how gifted students show creativity in 

mathematics.  He found that they are able to make up their own problems, come up with 

more than one solution to a problem, can see beyond previous methods to find new ways 

of solving a problem, and can identify missing information in a problem and ask the right 

questions to get the missing information (Sharma, 2013, p. 16).  Sharma (2013) 

encourages teachers of gifted students to find ways to cater to these strengths.  Providing 

challenging mathematical problems with potential for more than one correct answer with 

solutions or procedures that are not obvious, will bring out the best in mathematically 

gifted students. 
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Group work in Problem Solving 

Group work has recently become an integral part of mathematical pedagogy and 

may be particularly useful when working with gifted students.  Students working with 

their peers tend to critique the reasoning of others, argue the validity of their answers and 

defend their own work.  Working in groups is particularly useful in avoiding fixation on 

one method of solving a problem.  As students discuss their approaches, they gain insight 

into new ways to approach a problem.  When students work together toward a collective 

goal, their feelings about mathematics tend to become more positive.  Edna Leticia 

Hernandez Gárduñzo (2001) argues that in group work, encouragement, discussion and 

support from peers fosters a more positive attitude about mathematics, which in turn, 

creates students, particularly females, more interested in pursuing mathematics degrees 

and careers (Hernandez Garduno, 2001).  Since the goal of this curriculum is to not only 

challenge gifted learners, but also ensure that these students enjoy mathematics, many of 

the lessons will include group work (Higgens, 1994).   

 In order to ensure that group work is effective in our classrooms, we must look at 

a number of factors.  In particular, we need to look at the effectiveness of the 

communication of the group.  Much research claims that the effectiveness of group talk 

does not come automatically, but instead needs to be taught to students (Higgens, 1994).  

Joanna Higgens (1994) agrees that group work is essential to mathematical 

success in the classroom and quotes the New Zealand curriculum, which states that 

children should be working in groups and discussing mathematics.  She believes, 

however, that we need to look closely at how these groups work.  Higgens realizes that 

simply placing students in groups and having them work on mathematics is not enough to 
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truly be effective. She argues that the teacher plays a vital role in small group work and 

needs to be aware of how the groups are working and be ready to intervene when 

necessary.  If a particular group is not thinking mathematically as much as the teacher 

would like them to, he or she should ask them questions or ask them to explain each 

other’s thinking (Higgens, 1994).  Additionally, the teacher serves as a role model for 

how the students should be interacting with each other.  “The way that the teacher models 

instructions of small-group activities is the key to the occurrence of benefits such as peer 

assistance…The children learn what to say and do in the questioner role from the teacher 

model” (Higgens, 1994, p. 341).   Finally, Higgens notes that the nature of the problem 

plays a role in the effectiveness of group work, claiming that tasks need to be well 

connected to the lessons and sequential.  Schoenfeld (1992) also claims that students 

learn a lot about mathematics from their teachers.  Schoenfeld argues that the typical way 

that students see “problem-solving” in the classroom is that they are given a problem that 

has one solution and the way to get the solution is the method students learned in class.  

He claims that by the way mathematics is typically taught, “students learn that answers 

and methods to problems will be provided to them; the students are not expected to figure 

out the methods by themselves. Over time most students come to accept their passive 

role, and to think of mathematics as "handed down" by experts for them to memorize” 

(Shoenfeld, 1992, p. 27).  

 

Conclusion 

 The current method of educating gifted students in the United States is 

problematic in many ways.  If the United States wants to keep up with other high-
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achieving countries, American teachers need to ensure that our gifted students are being 

adequately challenged in mathematics.  Although funding for gifted education is lacking, 

there is still a lot that teachers can do.  Through problem solving, group work and a more 

in-depth curriculum, teachers can help their gifted students reach their true potential, 

enjoy mathematics and potentially continue in a field of mathematics beyond high school.  

This curriculum is designed to help teachers be successful in challenging their gifted 

students in either heterogeneous or homogenous classes.  Using unique, challenging 

problems that go beyond the normal curriculum and allowing students to work in groups 

to discover and learn will bring out the best in gifted students and encourage them to love 

mathematics.   
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Chapter 3: Body 

This curriculum is comprised of several mini-lessons designed to challenge 

students who are gifted in the area of mathematics.  Although it is a curriculum that could 

be used to supplement existing curriculum in a general education geometry classroom, it 

will be implemented in a separate “lab” class designed for students who are gifted in the 

area of mathematics.  Much of the work will be done with partners or in small groups, but 

students will have the opportunity to work alone if they choose.  The literature states that 

group work is beneficial for many gifted students, but some are more successful if they 

work alone (Hernandez Gardunio, 2001).  These sophomore students are capable of 

deciding which method works best for them.   

The lessons in this curriculum will be mostly rooted in geometry and will be 

based, in part, on the geometry common core standards.  They are, however, non-

sequential and therefore can be done in any order.  Although much of the content of the 

curriculum is in the common core learning standards for Geometry, the more significant 

concepts that students should learn while completing these problems are what common 

core designates the “mathematical practices.”  Most importantly, students will “make 

sense of problems and persevere in solving them” (National, 2010, p. 5).  The curriculum 

is designed so that the solutions are not obvious.  Students may try several different 

methods for solving the problem before they find one that will actually work.  The other 

important mathematical practice that will be covered in this curriculum is that students 

will learn to model with mathematics.  The common core modeling standards for high 

school mathematics breaks modeling down into six steps.  

“The basic modeling cycle…involves (1) identifying variables in the situation and 
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selecting those that represent essential features, (2) formulating a model by 

creating and selecting geometric, graphical, tabular, algebraic, or statistical 

representations that describe relationships between the variables, (3) analyzing 

and performing operations on these relationships to draw conclusions, (4) 

interpreting the results of the mathematics in terms of the original situation, (5) 

validating the conclusions by comparing them with the situation, and then either 

improving the model or, if it is acceptable, (6) reporting on the conclusions and 

the reasoning behind them (National, 2010, p. 61). 

 As students complete these problems, they will work with a variety of different 

models.  Student may choose to represent the situations in two-dimensional pictures or 

three-dimensional models.  Regardless of how they choose to represent the situations, 

students will need to use extreme care and will need to spend time analyzing whether 

their representations match the problem, whether or not they have all the information they 

need in their model, how they can use their model to better understand the problem, that 

their models are done to scale and represent the situation accurately and whether or not 

their final solution makes sense based on the model.  Once they arrive at an answer, they 

will need to check their answer against the model to ensure that the answer makes sense.   

 Students will complete many of the lessons in groups of two or three.  As 

mentioned above, group work has many benefits for students’ mathematical learning.  

When students spend time discussing and arguing about the potential methods for solving 

a problem, the problems with their approach, the additional information needed to solve 

the problem and the validity of their final answers, they will greatly gain insight into the 

best way to approach the problem and why their solutions work.  Groups will present 
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their solutions to their classmates, offering them a chance to compare their answers, 

seeing that there is often more than one correct way to solve a problem.   

 

Lesson One: Soccer Goalie Reaction Time 

The first lesson of this curriculum is titled Soccer Goalie Reaction Time and asks 

students to find the amount of time an average height soccer goalie has to get to the ball if 

the ball is kicked to the upper corner of the net.  This problem is one that can be done 

with students who are just beginning their geometry course.  The lesson requires that 

students use prior knowledge to solve for the missing sides of a right triangle using the 

Pythagorean Theorem and how to convert between units. In eighth grade, the students 

learn how to use and apply the Pythagorean Theorem.  Common Core learning standard 

8.G.B.7 claims that students should be able to “apply the Pythagorean Theorem to 

determine unknown side lengths in right triangles in real world and mathematical 

problems in two and three dimensions” (National, 2010, p. 48).  Much of the foundation 

of this lesson will be based on this standard.  Additionally, students are required to use 

the Pythagorean Theorem in the Geometry curriculum.  Standard G-SRT.C.8 requires 

that students “use trigonometric ratios and the Pythagorean Theorem to solve right 

triangles in applied problems” (National, 2010, p. 65).  The other task that students need 

to be proficient in is converting units.  Students worked heavily with ratios and rates in 

seventh grade and should be well aware of the steps needed to convert between units.  

Standard 7.RP.3 requires students to “use proportional relationships to solve multi-step 

ratio and percent problems” (National, 2010, p. 41).    

The lesson is based on a problem asked by a student to the Khan Academy.  The 
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Khan Academy has a video solution to the problem and the additional information that 

students will need available at https://www.khanacademy.org/math/basic-geo/basic-geo-

pythagorean-topic/basic-geo-pythagorean-theorem/v/soccer-thiago. 
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“Soccer Goalie Reaction Time” Lesson Plan 

I.  Objective  Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

Students will apply the Pythagorean Theorem multiple 

times to answer a real-life situation question. 

 

II. Preparation 

 

Standards   G-SRT.C.8: “Students use trigonometric ratios and the  

Addressed Pythagorean Theorem to solve right triangles in applied 

problems” 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

 

Students will learn to model with mathematics 

 

 

Materials Needed Videos, pencils, paper, calculators, modeling materials 

 

Source   Khan Academy  

 

Khan, S. (Producer). (2013, December 9).  Khan Academy. 

Thiago ask: How much time does a goal keeper 

have to save a penalty kick. Video retrieved from 

https://www.khanacademy.org/math/basic-

geo/basic-geo-pythagorean-topic/basic-geo-

pythagorean-theorem/v/soccer-thiago 

 

III. Procedure 

A. Anticipatory Set 

a. Students will watch a short tutorial video on how to save a penalty 

kick 

https://www.youtube.com/watch?v=V47SmRfB5t0 

b. Students will then watch a video of soccer goalie penalty kick save 

highlights.   

https://www.youtube.com/watch?v=hRaO5A5dGnc 

(1:45, 2:15, 2:50, 4:00, 5:20) 

B. Body 

a. Students will be given the question: “How much time does an average 
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height goalie have to get to the ball if a penalty kick is kicked to the 

upper corner of the net?” 

b. Students will work with a partner or a group of three 

c. They will first need to figure out the relevant information that they 

need to know in order to solve the problem.  Unlike typical word 

problems, students will need to ask to get the information they need to 

know to solve the problem  

i. The following pieces of information will be useful for students 

when solving this problem.  If possible, students should not be 

given the information, they should instead ask questions in 

order to obtain it: 

1.  The ball is 36 ft from the center of the goal 

2. The goal is 24 ft wide 

3. The goal is 8 ft tall 

4. An average goalie stands 7.5 ft tall with his reach* 

5. A penalty kick travels 60mph* 

6. An average person can jump at a speed of 15mph* 

*Note: these numbers are based on averages or estimates.  The 

process of solving the problem is much more important than a 

perfect numerical answer. 

d. The students will spend a lot of time working on a plan to solve the 

problem, trying various methods and asking for more relevant 

information if necessary 

e. When all groups have a solution, they will present their solutions to 

the class.   

f. After hearing all potential solutions and explanations, students will get 

a chance to revise their solutions. 

C. Closing 

a. There will be a class lead discussion about problems students had 

while solving the problems. 

b. Additionally, students will discuss what went well while they were 

working with their groups. 

D. Follow-up 

a. For homework, students will write clear and concise steps to solve the 

problem at hand.   
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Name: __________________________________   Date: _____________ 

Soccer Goalie Reaction Time Classwork 

 

How much time does an average height goalie have to get to the ball if a penalty kick is 

kicked to the upper corner of the net? 

 

 

Khan, S. (Producer). (2013, December 9).  Khan Academy. Thiago ask: How much time 

does a goal keeper have to save a penalty kick. Video retrieved from 

https://www.khanacademy.org/math/basic-geo/basic-geo-pythagorean-topic/basic-geo-

pythagorean-theorem/v/soccer-thiago 
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Soccer Goalie Reaction Time Homework 

 

Write clear and concise steps to answer the following question.  Include all relevant 

information a problem solver needs to know in order to answer the question.  How much 

time does an average height goalie have to get to the ball if a penalty kick is kicked to the 

upper corner of the net? 
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Lesson Two: Square It Up 

The second lesson of the curriculum requires some prior knowledge of geometry 

assumptions and facts.  Students must know the definition of midpoint, how to find the 

area of various figures without given measurements and how to compare sizes of figures.  

This lesson starts out with a basic question, one that students should be able to answer 

with relative ease and then modifies the question to make it more complex.  Students 

work in a group to solve this problem and justify their answers mathematically.   

Each solution method may require different prior knowledge and understanding.  

In the solution posed in this curriculum, students need to use several ideas from the 

Geometry curriculum.  Students must understand how to prove that two triangles are 

similar using the angle-angle similarity postulate.  In Geometry, standard G.SRT.A.3 

requires students to “use the properties of similarity transformations to establish the AA 

criterion for two triangles to be similar” (National, 2010, p. 65).  Additionally, 

G.SRT.B.5, requests that students apply the AA similarity postulate to solve problems.  It 

claims that students should, “use congruence and similarity criteria for triangles to solve 

problems and to prove relationships in geometric figures” (National, 2010, p. 65).  

Finally, once problem solvers have established that two of the triangles in the square are 

similar, they need to know the relationship between their areas.   

The lesson is based on a lesson found on Dan Meyer’s blog.  The questions can be 

found at http://blog.mrmeyer.com/wp-content/uploads/squareitup.pdf.   
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“Square It Up” Lesson Plan 

I.  Objective  Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

Students will use the information they know about area, 

and relationships between different figures to determine the 

fraction that each piece represents. 

 

II. Preparation 

 

Standards  

Addressed G.SRT.B.5: Use congruence and similarity criteria for 

triangles to solve problems and to prove relationships in 

geometric figures 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

 

 

 

Materials Needed Problem worksheet, pencils, paper, dynamic geometry 

software  

 

Source   Dan Meyer’s Blog  

 

Meyer, D. (Producer). (2011, August 18).  Dy/Dan. Some 

Really Obscure Geometry Problem. Retrieved from 

http://blog.mrmeyer.com/2011/3acts-some-really-

obscure-geometry-problem/ 

 

III. Procedure 

A. Anticipatory Set 

a. Students will be shown a picture of a square with the diagonals drawn 

on the smart board 

b. They will be asked what fraction each part of the box separated by the 

diagonals represents 

B. Body 

a. After students give their answers, they will be given the actual 

question: 

i. What fraction of the square would each portion represent if the 

endpoint of one of the diagonals was moved from the vertex to 



 24 

the midpoint of the side? 

b. Students will work as a group on this question.  They will discuss their 

answers and come up with a solution.  

c. Groups will present their solution(s) 

d. Groups will reconvene to revise their solutions 

e. After groups have their revised solutions, they will be shown an 

example on geometer’s sketchpad.  They will watch how the areas of 

the portions change as the size of the square changes.   

f. They will once again be given a chance to revise their solution 

C. Closing 

a. We will discuss what students learned as they worked on solving the 

problem.   

D. Follow-up 

a. Students will be given a follow-up question for homework.  What if 

the endpoint of the diagonal was moved so that it cut the side in a ratio 

of two to one? 
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Name: ________________________________  Date: ______________ 

 

Square It Up - Classwork 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meyer, D. (Producer). (2011, August 18).  Dy/Dan. Some Really Obscure Geometry 

Problem. Retrieved from http://blog.mrmeyer.com/2011/3acts-some-really-obscure-

geometry-problem/ 
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Name: _____________________________________  Date: ____________ 

 

Square It Up - Homework  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meyer, D. (Producer). (2011, August 18).  Dy/Dan. Some Really Obscure Geometry 

Problem. Retrieved from http://blog.mrmeyer.com/2011/3acts-some-really-obscure-

geometry-problem/ 
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Lesson 3: Seven Squares 

The third lesson in this curriculum is also rooted in the Pythagorean Theorem, but 

requires knowledge of operations with radicals, and therefore should be done after 

students learn about how to simplify and combine radicals in their geometry course.  

According to Common Core Learning Standard G-SRT.C.8, students need to use “the 

Pythagorean Theorem to solve right triangles in applied problems” (National, 2010, p. 

65).  Although simplifying radicals was formerly an Algebra topic, the common core 

learning standards do not begin to cover operations with radicals until Geometry.  

According to Module 2 of the Common Core Curriculum, simplifying radicals is part of 

standard N.RN.A.2, where students “rewrite expressions involving radicals and rational 

exponents using the properties of exponents” (National, 2010, p. 51).  This standard will 

be mastered in full in an Algebra 2 course, but the basics of operations with radicals 

begins in Geometry.   Additionally, for success with this lesson, students will need to 

know how to find the perimeter of a square, the definition of midpoint, and some algebra 

including combining like terms.    

In this problem, students will be given a perimeter for a square and will be told 

that another square will be drawn inside the first such that the vertices of the second 

square are the midpoints of the sides of the first square.  Then a third square will be 

drawn in the same fashion, such that the vertices of the third square are the midpoints of 

the sides of the second square.  This pattern will continue until there are seven squares in 

total and students will be asked to find the sum of the perimeters of the squares.  Students 

will solve the same problem twice.  First, they will solve the problem given a number for 
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the perimeter of the first square.  Then, once they arrive at the correct answer, they will 

face the same problem with a variable for the perimeter of the first square. 

 The lesson is based on a problem from MATH 605 taught by professor Gabriel 

Prajitura of SUNY Brockport.  
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“Seven Squares” Lesson Plan 

I.  Objective  Students will apply the Pythagorean Theorem and their 

knowledge of simplifying radicals to solve a problem. 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

 

II. Preparation 

 

Standards   G-SRT.C.8: “Students use trigonometric ratios and the  

Addressed Pythagorean Theorem to solve right triangles in applied 

problems” 

 

 N.RN.A.2: “Students rewrite expressions involving radicals 

and rational exponents using the properties of exponents” 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

    

Students will learn to model with mathematics 

 

 

 

Materials Needed Problem worksheet, pencils, paper  

 

Source   Gabriel Prajitura’s MATH 605 Geometry Problem Set 6 

 

Prajitura, G. (May 2013).  Geometry Problem Set 6. 

Retrieved from angel.brockport.edu, MTH 605. 

III. Procedure 

A. Anticipatory Set 

a. Students will be given the perimeter of a square and will be asked to 

find the length of the diagonal of the square.  They will be asked to 

express their answer in simplest radical form. 

b. We will discuss their approaches to solving the problem, focusing on 

their use of the Pythagorean Theorem and their knowledge of the sides 

of a square being equal in length 

B. Body 

a. Students will be given the following question: 

i. A square, MATH, has a perimeter of 16.  Another square has 

its vertices at the midpoints of the sides of the first.  A third 
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square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in 

total.  Find the sum of the perimeters of each square. 

ii. Students will have the option of working in groups or working 

alone to solve the problem 

iii. When they have a solution, it will be checked.  If their solution 

is correct, they will move on to the next problem. 

b. The second problem will be given to students/groups who have a 

correct answer to the first problem and requires the use of algebra: 

i.   A square, GEOM, has a perimeter of a.  Another square has 

its vertices at the midpoints of the sides of the first.  A third 

square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in 

total.  Find the sum of the perimeters of each square. 

C. Closing 

a. Students will discuss the patterns that they found while working on the 

two problems.   

D. Follow-up 

a. Students will be given a follow-up question for homework.  How will 

the answers to the questions change if the perimeter of the original 

square was doubled? 
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Name: __________________________________  Date: __________________ 

Seven Squares – Classwork 

Warm-up: A square has a perimeter of 32.  What is the length of a diagonal of the 

square?  Express your answer in simplest radical form. 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 1 

A square, MATH, has a perimeter of 16.  Another square has its vertices at the midpoints 

of the sides of the first.  A third square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in total.  Find the sum of the 

perimeters of each square. 
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Do not go on to problem 2 until your solution to problem 1 has been checked! 

 

 

Problem 2 

A square, GEOM, has a perimeter of a.  Another square has its vertices at the midpoints 

of the sides of the first.  A third square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in total.  Find the side length 

and perimeter of each square. 

 

Square Number Side Length Perimeter 

1   

2   

3   

4   

5   

6   

7   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Prajitura, G. (May 2013).  Geometry Problem Set 6. Retrieved from angel.brockport.edu, 

MTH 605.  
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Name: __________________________________  Date: ________________ 

Seven Squares Homework 

In class today you looked at finding the sum of the perimeters of seven squares whose 

vertices are midpoints of the other squares.  How would the lengths of the sides change if 

the perimeter of the original square doubled?  

 

Hint: Try doubling the perimeter of MATH or GEOM and compare the lengths of the 

sides to the original answers. 
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Lesson 4: Once Upon a Time 

 The fourth lesson in this curriculum is built around the central angles in a circle.  

Students may be able to complete this lesson early on in their Geometry course because it 

simply requires the knowledge that the sum of the central angles in a circle is three 

hundred sixty degrees.  Many students may come into the course with this prior 

knowledge. In the Geometry Common Core curriculum, standard G-C.2 requires that 

students “identify and describe relationships among inside angles” in a circle.  

 This lesson has students analyzing the angles formed by the hands of a clock.  

Students will start out by finding a time of day when the hands of a clock form a specific 

(forty-seven degree) angle.  They will then be asked to find other times in the day when 

the hands of a clock form the same angle.  Students will ultimately need to find the 

number of degrees in the angle formed by one minute and how many degrees the hour 

hand moves with each passing minute.  Using this knowledge, students may be able to 

come up with an equation or simply use trial-and-error.   

 The lesson is based on the “Once Upon a Time” problem of the month created by 

insidemathematics.org.  The basis for the problem can be found at 

http://www.insidemathematics.org/assets/problems-of-the month/.   
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“Once Upon a Time” Lesson Plan 

I.  Objective  Students will apply their knowledge of the central angles 

formed inside a circle. 

 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

 

II. Preparation 

 

Standards   G-C.2: “Students identify and describe relationships  

Addressed among inside angles radii and chords” 

 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

    

Students will learn to model with mathematics 

 

 

 

Materials Needed Problem worksheet, pencils, paper, compass  

 

Source   Inside Mathematics – Problem of the Month 

 

Noyce Foundation (2013). Problem of the month: Once 

upon a time. Retrieved from 

http://www.insidemathematics.org/assets/problems-

of-the-month/once%20upon%20a%20time.pdf 

 

III. Procedure 

A. Anticipatory Set 

a. Students will be shown an analog clock.   

b. They will be asked at what time of the day the hands form a 90° angle.  

Students will write their answers down on their own.  We will discuss 

the answers as a class and see how many possible times we can get. 

B. Body 

a. Students will be given the following questions: 

i. The minute hand and the hour hand on a clock form a 47° 

angle.  What time is it? 

ii. At what other times during the day do the hands on the clock 
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form a 47° angle? 

iii. How many times in a day (24 hour period) do the hands form a 

47° angle?  Explain your reasoning. 

iv. The students will have the option of working on the problems 

as a group or individually.  If students choose to work 

individually, they will have to discuss their work/answers 

occasionally with another person working alone or with a 

group of students. 

b. We will come back as a whole group and discuss the results.  We will 

create a class list of the times groups discovered with an angle of 47° 

C. Closing 

a. As a class, we will discuss the patterns students saw when looking at 

the angles represented by different times. 

D. Follow-up 

a. Students will be given a follow-up question for homework.  Find the 

angle formed by the hands of the clock for the ten-minute intervals 

between 3:00, 4:00 and 5:00.  They will write about any patterns they 

see between the three hours.   
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Name: ___________________________________  Date: ______________ 

Once Upon a Time 

Warm-up:  

On an analog clock (see right), what is the 

measure of the angle formed by the hands at the 

following times? 

a) 2:00 

b) 4:30 

c) 5:45 

d) 7:10 

e) 8:32 

f) 9:09 
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Problems 

 

1. The minute hand and hour hand on a clock 

form a 110° angle.  What time could it be? 

 

 

 

 

 

2. At what other times during the day do the 

hands on the clock form a 110° angle? (Write your answers to the nearest second) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noyce Foundation (2013). Problem of the month: Once upon a time. Retrieved from 

http://www.insidemathematics.org/assets/problems-of-the-

month/once%20upon%20a%20time.pdf
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Name: ________________________________  Date: ________________ 

Once Upon a Time Homework 

Fill in the following table for the angles formed at each time. 

Time Angle 

formed by 

hands 

Time Angle 

formed by 

hands 

Time Angle 

formed by 

hands 

3:00  4:00  5:00  

3:10  4:10  5:10  

3:20  4:20  5:20  

3:30  4:30  5:30  

3:40  4:40  5:40  

3:50  4:50  5:50  

 

What patterns do you notice? 
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Lesson 5: Toothpick Math 

 The fifth lesson in the curriculum is one that is not based on any specific part of 

the Geometry curriculum, but instead, is one that is meant to get students to think 

logically.  Students will work on the mathematical practices, focusing on modeling with 

mathematics.  Students will need to use their knowledge of various shapes and their 

spatial reasoning abilities.   

 The lesson involves ten toothpick puzzles.  The puzzles start with a picture 

formed by toothpicks and ask the problem solver to move or remove a certain number of 

toothpicks to change the picture in a specific way.  While working on spatial reasoning 

and problem solving skills, the puzzles are also a great way to help overcome fixation in 

mathematical problem solving.  Yogesh Sharma (2013) discussed the challenges students 

face with fixation in mathematical problem solving.  When students are faced with a new 

problem and cannot see past a method that worked for solving a previous problem, even 

after realizing it will not work, they struggle to become effective problem solvers.  

Sharma recommends that teachers “try to provide certain exercises to test fixation in 

mathematics (Sharma, 2013, p. 18).  This lesson is designed to do just that. 

 The lesson is based on education.com’s Toothpick math which can be found at 

http://www.education.com/activity/article/Toothpick_Math/. 
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“Toothpick Math” Lesson Plan 

I.  Objective  Students will apply their spatial reasoning and critical 

thinking skills to overcome fixedness in solving problems. 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

 

II. Preparation 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

    

Students will learn to model with mathematics 

 

 

 

Materials Needed Toothpicks, problem worksheet, pencils, paper  

 

Source   Education.com – Toothpick Math 

 

Donaldson, C (2014). Toothpick math. Retrieved from 

http://www.education.com/activity/article/Toothpic

k_Math/ 

 

III. Procedure 

A. Anticipatory Set 

a. Students will be given 24 toothpicks.  They will be given two minutes 

to create the most creative shape they can with the toothpicks.  

B. Body 

a. Students will keep their 24 toothpicks to be used for the toothpick 

problems.   

b. Students will complete the toothpick puzzles on their own. 

c. They will try to solve as many as they can, using their toothpicks and 

the worksheet.   

d. On the worksheet they will mark which toothpicks they moved or 

removed. 

e. With ten minutes left, we will go over the toothpick questions.  

Students will be able to present their solutions to the class.   

C. Closing 

a. We will discuss fixation and how the problems helped students 

overcome fixation 
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D. Follow-up 

a. Students will be asked to create their own toothpick puzzle for 

homework 
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Name: ____________________________________  Date: ________________ 

Toothpick Math Classwork 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Donaldson, C (2014). Toothpick math. Retrieved from 

http://www.education.com/activity/article/Toothpick_Math/ 
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Name: ___________________________________  Date: __________________ 

 

Create your own toothpick problem.   

The problem must fit the following criteria: 

 The greatest number of toothpicks that can be used is 24 

 You may use up to two coins in addition to the toothpicks 

 The problem must have just one way of solving it 

 The solution must be obtained from either moving or removing a given 

number of toothpicks 

 You must draw the problem and the solution 
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Lesson 6: Angles in Triangles 

The sixth lesson focuses on finding missing angles in triangles.  In order to be 

successful with these problems, students must know a number of theorems about the 

angles in triangles and angles formed by parallel lines.  They may be required to use 

theorems such as the triangle angle sum theorem, the isosceles triangle theorem, the 

exterior angle theorem, the quadrilateral angle sum theorem, linear pairs sum to one-

hundred eighty degrees and the parallel postulate.  The Geometry Common Core 

curriculum covers each of these theorems in standard G.CO-9 and G.CO-10.  According 

to standard G-CO.9, “students will prove theorems about lines and angles. Theorems 

include: vertical angles are congruent; when a transversal crosses parallel lines, alternate 

interior angles are congruent and corresponding angles are congruent; points on a 

perpendicular bisector of a line segment are exactly those equidistant from the segment’s 

endpoints.”  Additionally, according to G.CO-10, students should “prove theorems about 

triangles.  Theorems include: measures of interior angles of a triangle sum to 180°, [and] 

base angles of isosceles triangles are congruent” (National, 2010, p. 65).     

In this lesson, students will work through two triangle angle problems.  In 

addition to being able to use the aforementioned angle theorems, students will also need 

to work to overcome fixation in mathematical problem solving.  Although these problems 

will be centered on finding the angles in triangles, students will need to see past the 

previous problems in order to be successful with each subsequent problem.  Students will 

first find the missing angle measure in a triangle, knowing which sides are congruent, but 

knowing none of the angle measures.  They must be competent in their ability to use 

algebra in order to solve this problem.  The next question requires that students draw 
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several auxiliary lines.    As students work through the problem, several hints will be 

given to ensure that students make it to the final answer.  

The first question in this lesson came from the University of Washington’s Math 

444 course and can be found at http://www.math.washington.edu/~lee/Courses/444-

2010/challenge.pdf.  The second question in the lesson was named “The World’s Hardest 

Easy Geometry Problem” and can be found at http://thinkzone.wlonk.com/MathFun/ 

Triangle.htm.  The solution was provided by Matthew Daly, a master’s thesis student at 

the State University of New York College at Brockport. 
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“Angles in Triangles” Lesson Plan 

I.  Objective  Students will apply their knowledge of angles formed 

inside triangles. 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

 

II. Preparation 

 

Standards   G-CO.10: “Students prove theorems about triangles.  

Addressed Theorems include: measures of interior angles of a  

 triangle sum to 180°, [and] base angles of isosceles 

triangles are congruent” 

 

G-CO.9: “Students will prove theorems about lines and 

angles. Theorems include: vertical angles are congruent; 

when a transversal crosses parallel lines, alternate interior 

angles are congruent and corresponding angles are 

congruent; points on a perpendicular bisector of a line 

segment are exactly those equidistant from the segment’s 

endpoints.” 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

 

Students will learn to model with mathematics 

Materials Needed Problem worksheet, pencils, paper  

 

Source University of Washington – Math 444 – Geometry for 

Teachers 

University of Washington Math 444 (2010). Geometry for 

teachers: Some challenge problems. Retrieved from 

http://www.math.washington.edu/~lee/Courses/444-

2010/challenge.pdf. 

 

Keith’s Think Zone – World’s Hardest Easy Geometry 

Problem 

Keith Enevoldsen.  World’s Hardest Easy Geometry 

Problem.  Retrieved from  http://thinkzone. 

wlonk.com/MathFun/Triangle.htm 
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III. Procedure 

A. Anticipatory Set 

a. Students will be given some basic triangle missing angle questions. 

b. We will discuss the answers 

B. Body 

a. Students will be given a worksheet with two missing angle questions 

i. They will work with a partner or as a group to determine the 

measure of the missing angles for the first problem 

ii. When groups have a solution, they will get their solution 

checked.   

iii. If their solution is approved, they will go on to the next 

question.  They will be given about ten minutes to work on the 

question on their own.   

iv. After ten minutes, a hint will be given to students as to which 

auxiliary line should be drawn.  Then they will be given more 

time to work on their own.  When they are at a standstill more 

hints will be given.   

v. Students will work through the question, with various hints 

given throughout the process.  After each hint, students will be 

given time to think about the hint and discover more missing 

information in the problem 

1. Possible hints: Draw auxiliary line 𝐷𝐹̅̅ ̅̅ ∥ 𝐴𝐵̅̅ ̅̅ .  Draw in 

AF and let G be the intersection of 𝐴𝐹̅̅ ̅̅  and 𝐷𝐵̅̅ ̅̅ .  Draw 

in 𝐶𝐺̅̅ ̅̅ .  Look for known angles due to theorems such as 

the angles from when parallel lines are cut by a 

transversal, the isosceles triangle theorem, congruent 

triangle theorems, and corresponding parts of congruent 

triangles are congruent 

b. We will come back as a whole group and discuss the results.  We will 

discuss the solution and how to obtain the solution 

C. Closing 

a. We will discuss problem-solving strategies that groups used to obtain 

solutions to the final problem. 

D. Follow-up 

a. Students will fill in missing information in the proof of the problem.  
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(16x+9)

(8x-1)

(4x+4)

B

C

A

Name: _________________________________________  Date: ____________ 

 

Angles in Triangles Classwork 

Warm-up: Find the measure of the angle marked 𝜃 in each triangle below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Problem Set   

In the following diagram, 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 and 𝐴𝐷 = 𝐵𝐷.  Find the measure of angle D.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Washington Math 444 (2010). Geometry for teachers: Some challenge 

problems. Retrieved from http://www.math.washington.edu/~lee/Courses/444-

2010/challenge.pdf. 

A

D

B

C

(18x-5)

(10x+6)

E

D

F
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Determine the measure of angle 𝑥. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keith Enevoldsen.  World’s Hardest Easy Geometry Problem.  Retrieved from  

http://thinkzone. wlonk.com/MathFun/Triangle.htm  
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Prove 𝑚∡𝑥 = 20°.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keith Enevoldsen.  World’s Hardest Easy Geometry Problem.  Retrieved from  

http://thinkzone. wlonk.com/MathFun/Triangle.htm 
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Lessons 7 and 8: Sectors in Circles and Cutting the Cake 

The final two problems in this curriculum are centered on sectors in circles.  

According to Common Core Geometry standard G-C.5, students should be able to “find 

arc lengths and area sectors of circles” (National, 2010, p. 66).  However, the Geometry 

Curriculum overview claims that only a small portion (2-8%) of the examination in 

geometry will be on circles.  Teachers may see this as a category to skim or skip, but 

there are a lot of ways to use this topic to challenge gifted students.  The questions shown 

in this curriculum can be done with an understanding of circle sectors, the Pythagorean 

Theorem, percentages and algebra. 

 The first sector lesson consists of two different applications of sectors.  The first 

two problems ask students to compare the areas of sectors and circles.  Students will need 

to use the Pythagorean Theorem and algebra to complete the problems.  The final 

problem has two quarter circles overlapping in a rectangle.  Students are to use the areas 

of these sectors to find the missing side of a rectangle.  These problems require students 

to have a thorough understanding of algebra including combining like terms and 

multiplying binomials.   

 The second sector lesson is based on a real life problem involving a circular cake.  

Students are told that a circular cake with a ten inch diameter is divided into twelve equal 

pieces.  Students must first find the area of each slice of cake.  Then they learn that the 

already sliced cake must be cut again so that it can serve twenty-four people.  Students 

must determine where the cut should be made so that each person gets an equal amount 

of cake and how much cake each person will get.  Students will need to apply their 

knowledge of sectors, finding areas of circles and operations with radicals.    
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 The first lesson is a combination of questions found from two sources.  The first is 

from the NRICH Project from the University of Cambridge.  The first two questions from 

their problem set “Round and Round” were used in the lesson and can be obtained at 

http://nrich.maths.org/634/.  The latter part of the lesson was based on a problem posed 

by the blog Five Triangles.  It can be obtained at http://fivetriangles.blogspot.com/ 

2014/09/184-overlapping-sectors.html.  The second lesson on sectors was based on a 

worksheet from the Virginia Department of Education and can be obtained at 

http://www.doe.virginia.gov/testing/solsearch/sol/mat/G/m_ess_g-11bc.pdf. 
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“Sectors of Circles” Lesson Plan 

I.  Objective  Students will apply their knowledge of finding the area of 

circles and sectors to compare the size of sectors. 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

 

II. Preparation 

 

Standards   G-C.5: “Students will find the arc lengths and areas of  

Addressed sectors” 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them  

    

Students will learn to model with mathematics 

 

 

 

Materials Needed Problem worksheet, pencils, paper  

 

Source NRICH – University of Cambridge 

 

NRICH (2014). Round and round. University of 

Cambridge.  Retrieved from 

http://nrich.maths.org/634.  

 

Five Triangles (2014). Overlapping Sectors. Retrieved 

from http://fivetriangles.blogspot.com/ 

2014/09/184-overlapping-sectors.html 

III. Procedure 

A. Anticipatory Set 

a. Students will find the area of various sectors of circles in anticipation 

of applying the concept to more complex problems 

B. Body 

a. Students will be given the worksheet with all three sector questions.   

b. They will be given the option to work alone or with a partner.   

c. As they complete each question, they will get their solution approved 

before moving on to the next question. 

C. Closing 

a. We will discuss the solutions to the problems as a group 
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Name: ___________________________________  Date: _________________ 

 

Sectors of Circles Classwork 

Warm-up: Circle A is shown to the right.  The length of 

diameter 𝐴𝐵̅̅ ̅̅  is 8.  Find the area of each sector.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem Set: 

Prove that the shaded area of the semicircle is equal to the area of the inner circle. 

 
  

90
30

60

C

A

B

D

E

F
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What percentage of the sector OAB is taken up with the inner circle? 

 
 

 

 

 

 

NRICH (2014). Round and round. University of Cambridge.  Retrieved from 

http://nrich.maths.org/634.  

 

  

The diagram below shows rectangle ABCD with height 10 cm.  An arc with center at 

point B is drawn from point A to side 𝐵𝐶̅̅ ̅̅ .  An arc with center at point C is drawn from 

point D to side 𝐵𝐶̅̅ ̅̅ .  Given that the shaded regions a and b have equal area, determine the 

length of 𝐵𝐶̅̅ ̅̅ .   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Five Triangles (2014). Overlapping Sectors. Retrieved from 

http://fivetriangles.blogspot.com/ 2014/09/184-  
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“Cutting the Cake” Lesson Plan 

I.  Objective  Students will apply their knowledge of finding the area of 

circles and sectors to compare the size of sectors. 

Students will persevere in solving a problem, asking for 

relevant information, analyzing the situation and arguing 

the validity of their final answer.   

II. Preparation 

 

Standards   G-C.5: “Students will find the arc lengths and areas of  

Addressed sectors” 

 

Mathematical  Students will make sense of problems and persevere in  

Practices  solving them   

Students will learn to model with mathematics 

 

 

 

Materials Needed Problem worksheet, pencils, paper  

 

Source Virginia Department of Education – Activity Sheet 2: Cake 

Problem 

 

Virginia Department of Education (2011). Activity Sheet 2: 

Cake Problem. Mathematics Enhanced Scope and 

Sequence.  Retrieved from 

http://www.doe.virginia.gov/testing/solsearch/sol/m

at/G/m_ess_g-11bc.pdf. 

 

III. Procedure 

A. Anticipatory Set 

a. Students will be given a question about pizza.  They will look at a 

pizza with a sixteen inch diameter.  They will be asked the area of 

each slice of pizza if it’s cut into 6 slices. 

b. Students will work on the questions on their own and we will come 

back together as a group to discuss the answers. 

B. Body 

a. Students will be given the Cake problem worksheet.  They will have 

the opportunity to work on it in small groups or on their own.   

b. As students work, the teacher will walk around the room, monitoring 

student progress.   

C. Closing 
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a. Students will exchange solutions with another group/person.  They 

will then critique the solution 

D. Follow-up 

a. Students will be given a follow-up question: what if, instead of equal 

pieces, you want to split the cake into twenty-four pieces such that half 

of the pieces are twice as big as the other pieces.   

  



 59 

Name: ______________________________________  Date: ____________ 

 

Cutting the Cake – Classwork 

 

Warm-up: You order a pizza for your friends.  The pizza has a diameter of twenty-four 

inches.  If you cut the pizza into six equal slices, what will the area of each piece be?   

 

 

 

 

 

 

 

 

 

 

Problem Set 

You are halfway through a party and twelve people are there.  You decide to cut the 

circular cake with a diameter of 10” into 12 equal pieces. 

1. What is the area of the top of each piece of cake? 
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2. Before you get a chance to serve the cake, twelve more people arrive.  You 

already cut the twelve pieces out of the cake, but decide you can still make equal 

slices by cutting out a concentric circle in the cake to make 24 pieces.  How far 

from the center of the cake should the circle be made so that all 24 people get the 

same amount of cake? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  What is the area of each segment of cake?  How much cake will each person 

receive?  

 

 

 

 

 

 

 

 

 

 

 

 

Virginia Department of Education (2011). Activity Sheet 2: Cake Problem. Mathematics 

Enhanced Scope and Sequence.  Retrieved from 

http://www.doe.virginia.gov/testing/solsearch/sol/mat/G/m_ess_g-11bc.pdf. 
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Cutting the Cake – Homework 

As you are just about to make your concentric circle cut, one lady speaks up.  “Women 

usually eat less than men.  Since there are 12 women and 12 men here, maybe you should 

make the pieces for the men twice as big as the pieces of the women.”  You decide this is 

a good idea.  How far from the center of the cake should the circle cut be made so that the 

outside pieces are twice as big as the inside pieces?    
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Chapter 4: Discussion, Summary and Reflection 

 The curriculum is designed to offer a resource for teachers to reach their gifted 

learners despite limited funding for gifted students in the United States.   Although it is 

designed for students who are currently taking New York State Common Core Geometry, 

it is suitable for any gifted learner with a geometry background.  Gifted students benefit 

greatly from solving a variety of problems, particularly those in which the answers or 

solution methods are not obvious, all the information is not simply given to the students, 

and problems that have more than one correct answer. By offering these types of 

problems this curriculum can truly challenge gifted students and help them reach their 

full potential.   

Although the lessons in the curriculum focus on a variety of topics, the common 

theme is problem solving.  The lessons focus on the Common Core Mathematical 

Practice, students will “make sense of problems and persevere in solving them” 

(National, 2010, p. 5).  As Ross (1993) pointed out, gifted students in the United States 

are not given opportunities to solve challenging problems as often as those in other 

countries.  As a result, gifted students in the United States are often well behind gifted 

students in other countries (National, 2014).  Through the use of this curriculum, teachers 

can expose their gifted students to unique, thought-provoking problems. 

Gifted students benefit greatly from being challenged and actually enjoy solving 

challenging problems (Threlfall & Hargreaves, 2008).  They are able to ask for relevant 

information, find more than one correct answer and more than one method of solving 

problems and make up their own problems (Yogesh Sharma, 2013).  When teachers offer 
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these opportunities to their students, not only do the students excel, but they also tend to 

appreciate and enjoy mathematics more (Threlfall & Hargreaves, 2008).    
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Appendix 

Soccer Goalie Reaction Time Classwork 

 

How much time does an average height goalie have to get to the ball if a penalty kick is 

kicked to the upper corner of the net? 

 

Let 𝑏 =distance from the ball to  

the bottom corner of the net 

 362 + 122 = 𝑏2  , 𝑏 = 37.95 ft 

Let u = distance from the ball to the  

 upper corner of the net  

37.952 + 82 = 𝑢2, 𝑢 = 38.78 ft  

Let r = distance from the middle of  

the goal to the upper corner of the net 

122 + 82 = 𝑟2,  𝑟 = 14.42 ft 

Assume the height of the goalie from the ground to the tip of his fingers when he reaches 

is 7.5 ft.  Then the goalie needs to travel 6.9 ft. 

Assume the ball travels 60mph and therefore it travels 88 ft/sec.  Assume the goalie 

travels 15 mph and therefore he/she travels 22 feet per second.   

Since distance equals rate times time, the ball makes it to the upper corner of the goal in 

0.44 seconds and the goalie makes it to the upper corner of the net in 0.31 

seconds.  

Therefore, the goalie has 0.13 seconds to react to the kick and begin his or her jump. 
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Soccer Goalie Reaction Time Homework 

 

Write clear and concise steps to answer the following question.  Include all relevant 

information a problem solver needs to know in order to answer the question.  How much 

time does an average height goalie have to get to the ball if a penalty kick is kicked to the 

upper corner of the net? 

 

 

 

 

 

 

 

 

 

Answers will vary  
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Square It Up – Classwork 

 

 

 

 

 

 

 

The ratio of areas of region ADMP: APB: CPB: CMP is 5:4:2:1.   

The area of ADMP is 5/12 of the area of the entire square 

The area of APB is 1/3 (4/12) of the area of the entire square 

The area of CPB is 1/6 (2/12) of the area of the entire square 

The area of CPM is 1/12 of the area of the entire square 

 

Justification 

Since ABCD is a square, we know that 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 = 𝐴𝐷 and that 𝐴𝐵 ∥ 𝐷𝐶 and 

𝐴𝐷 ∥ 𝐵𝐶.   

 

We can prove that ∆𝐴𝑃𝐵~∆𝐶𝑃𝑀.  We know that ∡𝐴𝐵𝑃∡ ≅ 𝐶𝑀𝑃 since when parallel 

lines are cut by a transversal, alternate interior angles are congruent.  We also know that 

∡𝐴𝑃𝐵 ≅ ∡𝐶𝑃𝑀 since vertical angles are congruent.  Therefore, by the angle angle 

similarity postulate, ∆𝐴𝑃𝐵~∆𝐶𝑃𝑀.  Since M is the midpoint of 𝐷𝐶̅̅ ̅̅  and 𝐷𝐶 = 𝐴𝐵, 

𝑀𝐶 =
𝐴𝐵

2
.  Therefore the ratio of the sides of ∆𝐴𝑃𝐵: ∆𝐶𝑃𝑀 = 2: 1, hence the ratio of 

their areas is 4:1.   

 

Since 𝐴𝐶̅̅ ̅̅  is the diagonal in a square, we know that the sum of the areas of ∆𝐴𝑃𝐵 +

∆𝐶𝑃𝐵 is half the area of the entire square.  We also know, that ∆𝑀𝐶𝐵 is one-quarter of 

the area of the entire square.  We can let the area of ∆𝐴𝑃𝐵 = 𝑎, the area of ∆𝐵𝑃𝐶 = 𝑏 

and the area of ∆𝑀𝑃𝐶 = 𝑐.  Then we know that 𝑎 + 𝑏 =
1

2
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and 𝑐 + 𝑏 =

1

4
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷).  Therefore by substitution 4𝑐 + 𝑏 =

1

2
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and hence 𝑐 =

1

12
(𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐵𝐶𝐷).  Then we know that 𝑏 =

1

6
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and 𝑎 =

1

3
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷).  

Then by subtraction, the area of 𝐴𝐷𝑀𝑃 =
5

12
(𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐵𝐶𝐷).   
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Name: _____________________________________  Date: ____________ 

 

Square It Up - Homework  

 

 

 

 

 

 

The ratio of areas of region ADMP: APB: CPB: CMP is 11:9:3:1.   

The area of ADMP is 11/24 of the area of the entire square 

The area of APB is 3/8 (9/24) of the area of the entire square 

The area of CPB is 1/8 (3/24) of the area of the entire square 

The area of CPM is 1/24 of the area of the entire square 

 

Justification 

Since ABCD is a square, we know that 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 = 𝐴𝐷 and that 𝐴𝐵 ∥ 𝐷𝐶 and 

𝐴𝐷 ∥ 𝐵𝐶.   

 

We can prove that ∆𝐴𝑃𝐵~∆𝐶𝑃𝑀.  We know that ∡𝐴𝐵𝑃∡ ≅ 𝐶𝑀𝑃 since when parallel 

lines are cut by a transversal, alternate interior angles are congruent.  We also know that 

∡𝐴𝑃𝐵 ≅ ∡𝐶𝑃𝑀 since vertical angles are congruent.  Therefore, by the angle angle 

similarity postulate, ∆𝐴𝑃𝐵~∆𝐶𝑃𝑀.  Since M divides 𝐷𝐶̅̅ ̅̅  so that 𝐷𝑀̅̅ ̅̅ ̅ is twice the length 

of 𝑀𝐶̅̅̅̅̅ and 𝐷𝐶 = 𝐴𝐵, 𝑀𝐶 =
𝐴𝐵

3
.  Therefore the ratio of the sides of ∆𝐴𝑃𝐵: ∆𝐶𝑃𝑀 = 3: 1, 

hence the ratio of their areas is 9:1.   

 

Since 𝐴𝐶̅̅ ̅̅  is the diagonal in a square, we know that the sum of the areas of ∆𝐴𝑃𝐵 +

∆𝐶𝑃𝐵 is half the area of the entire square.  We also know, that ∆𝑀𝐶𝐵 is one-sixth of the 

area of the entire square.  We can let the area of ∆𝐴𝑃𝐵 = 𝑎, the area of ∆𝐵𝑃𝐶 = 𝑏 and 

the area of ∆𝑀𝑃𝐶 = 𝑐.  Then we know that 𝑎 + 𝑏 =
1

2
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and 𝑐 + 𝑏 =

1

6
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷).  Therefore by substitution 9𝑐 + 𝑏 =

1

2
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and hence 𝑐 =

1

24
(𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐵𝐶𝐷).  Then we know that 𝑏 =

1

8
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷) and 𝑎 =

3

8
(𝑎𝑟𝑒𝑎 𝐴𝐵𝐶𝐷).  

Then by subtraction, the area of 𝐴𝐷𝑀𝑃 =
11

24
(𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐵𝐶𝐷).   
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Name: _____________________________   Date: _______________ 

Seven Squares – Classwork 

Warm-up: A square has a perimeter of 32.  What is the length of a diagonal of the 

square?  Express your answer in simplest radical form. 

 

Since the diagonal of the square forms a right triangle with the sides, we can use the 

Pythagorean Theorem to solve for the length of the diagonal, which we will call d.  

Therefore, we know 𝑑2 = 82 + 82 and hence 𝑑 = 8√2. 

 

 

 

 

 

 

 

Problem 1 

A square, MATH, has a perimeter of 16.  Another square has its vertices at the midpoints 

of the sides of the first.  A third square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in total.  Find the sum of the 

perimeters of each square. 

 

When we connect the midpoints of a square to form another square, it forms right 

triangles.  Therefore, can find the side of each subsequent square using the Pythagorean 

Theorem.  Below is the length of each side with 1 representing the original square, 

counting up until the final square. 

 

Square Number Equation to solve for side Side Length Perimeter 

1 32/4 8 32 

2 42 + 42 = 𝑎2 4√2 16√2 

3 (2√2)
2

+ (2√2)
2

= 𝑏2  4 16 

4 22 + 22 = 𝑎2 𝑎 = 2√2 8√2 

5 (√2)
2

+ (√2)
2

= 𝑏2 𝑏 = 2 8 

6 12 + 12 = 𝑐2 𝑐 = √2 4√2 

7 

(
√2

2
)

2

+ (
√2

2
)

2

= 𝑑2 
𝑑 = 1 4 

 

Sum of Perimeters: 

32 + 16√2 + 16 + 8√2 + 8 + 4√2 + 4 = 28√2 + 60  
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Do not go on to problem 2 until your solution to problem 1 has been checked! 

 

 

Problem 2 

A square, GEOM, has a perimeter of a.  Another square has its vertices at the midpoints 

of the sides of the first.  A third square has its vertices at the midpoints of the sides of the 

second.  Continuing in the same way, there are 7 squares in total.  Find the side length 

and perimeter of each square 

 

Square Number Equation to solve for side Side Length Perimeter 

1 𝑎

4
 

𝑎

4
 𝑎 

2 
(

𝑎

8
)

2

+ (
𝑎

8
)

2

= 𝑏2 
𝑎√2

8
 

𝑎√2

2
 

3 

(
(𝑎√2)

16
)

2

+ (
(𝑎√2)

16
)

2

= 𝑐2 

𝑎

8
 

𝑎

2
 

4 
(

𝑎

16
)

2

+ (
𝑎

16
)

2

= 𝑑2 
𝑎

8√2
=

𝑎√2

16
 

𝑎

2√2
=

𝑎√2

4
 

5 
(

𝑎

16√2
)

2

+ (
𝑎

16√2
)

2

= 𝑒2 
𝑎

16
 

𝑎

4
 

6 
(

𝑎

32
)

2

+ (
𝑎

32
)

2

= 𝑓2 
𝑎

16√2
=

𝑎√2

32
 

𝑎

4√2
=

𝑎√2

8
 

7 
(

𝑎

32√2
)

2

+ (
𝑎

32√2
)

2

= 𝑔2  
𝑎

32
 

𝑎

8
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Name: __________________________________  Date: ________________ 

 

Seven Squares Homework 

In class today you looked at finding the sum of the perimeters of seven squares whose 

vertices are midpoints of the other squares.  How would the lengths of the sides change if 

the perimeter of the original square doubled?  

 

Hint: Try doubling the perimeter of MATH or GEOM and compare the lengths of the 

sides to the original answers. 

 

Answers will vary. 

Square Number Side Length Perimeter 

1 16 64 

2 8√2 32√2 

3 8 32 

4 4√2 16√2 

5 4 16 

6 𝑎 = 2√2 8√2 

7 𝑏 = 2 8 

 

Square Number Side Length Perimeter 

1 𝑎

2
 2𝑎 

2 𝑎√2

4
 

𝑎√2 

3 𝑎

4
 𝑎 

4 𝑎√2

8
 

𝑎√2

2
 

5 𝑎

8
 

𝑎

2
 

6 𝑎

8√2
=

𝑎√2

16
 

𝑎

2√2
=

𝑎√2

4
 

7 𝑎

16
 

𝑎

4
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Name: ___________________________________  Date: ______________ 

Once Upon a Time 

Warm-up:  

On an analog clock (see right), what is the 

measure of the angle formed by the hands at the 

following times? 

a) 2:00 60° 

b) 3:30 65° 

c) 5:45 97.5° 

d) 7:10 155° 

e) 8:32 64° 

f) 9:09 220.5° 

 

**The minute hand moves 6° every minute.  The hour hand moves 0.5° every minute.** 
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Problems 

1. The minute hand and hour hand on a clock 

form a 110° angle.  What time could it be? 

See list below 

 

 

 

 

2. At what other times during the day do the 

hands on the clock form a 110° angle?  

(write your answers to the nearest second) 

12:20, 12:45:20, 1:25:20, 1:50:55, 2:30:55, 2:56:22, 3:36:22, 4:01:49, 4:41:49, 

5:07:16, 5:47:16, 6:12:44, 6:52:44, 7:18:11, 7:58:11, 8:23:38, 9:03:38, 9:29:05, 

10:09:05, 10:34:33, 11:14:32, 11:40 
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Name: ________________________________  Date: ________________ 

Once Upon a Time Homework 

Fill in the following table for the angles formed at each time. 

Time Angle 

formed by 

hands 

Time Angle 

formed by 

hands 

Time Angle 

formed by 

hands 

3:00 90° 4:00 120°  5:00 150°  

3:10 35° 4:10 65°  5:10 95°  

3:20 20°  4:20 10°  5:20 40°  

3:30 75°  4:30 45°  5:30 15°  

3:40 130°  4:40 100°  5:40 70°  

3:50 185°  4:50 155°  5:50 125°  

 

What patterns do you notice? 

Answers will vary.  
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Name: ____________________________________  Date: ________________ 

Toothpick Math Classwork 

Donaldson, C (2014). Toothpick math. Retrieved from 

http://www.education.com/activity/article/Toothpick_Math/ 
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Name: ___________________________________  Date: __________________ 

 

Create your own toothpick problem.   

The problem must fit the following criteria: 

 The greatest number of toothpicks that can be used is 24 

 You may use up to two coins in addition to the toothpicks 

 The problem must have just one way of solving it 

 The solution must be obtained from either moving or removing a given 

number of toothpicks 

 You must draw the problem and the solution 

Answers will vary 
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(16x+9)

(8x-1)

(4x+4)

B

C

A

(18x-5)

(10x+6)

E

D

F

Name: _________________________________________  Date: ____________ 

 

Angles in Triangles Classwork 

Warm-up: Find the measure of the angle marked 𝜃 in each triangle below. 

 

 

 

𝜽 = 𝟒𝟕   

        𝜽 = 𝟔𝟕 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Problem Set   

In the following diagram, 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐷 and 𝐴𝐷 = 𝐵𝐷.  Find the measure of angle D.   

 

𝒎∡𝒅 = 𝟑𝟔°  

A

D

B

C
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Determine the measure of angle 𝑥. 

𝑚∡𝑥 = 20° 

See proof below  
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Prove 𝑚∡𝑥 = 20°. 

 

Proof created based on a proof by Matthew Daly (2014) 

Construct 𝐷𝐹̅̅ ̅̅ ∥ 𝐴𝐵̅̅ ̅̅  and let the intersection of 𝐵𝐷̅̅ ̅̅  and 𝐴𝐹̅̅ ̅̅  be G. 
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Statement Reason 

1. ∡𝐵𝐴𝐶 = 80°, 

∡𝐴𝐵𝐶 = 80°, 

∡𝐵𝐴𝐸 = 70°,
∡𝐷𝐴𝐸 = 10°,     
 ∡𝐴𝐵𝐷 = 60°, 

∡𝐷𝐵𝐸 = 20°, 

∡𝐴𝐶𝐵 = 20°  

1.  Given 

2. 𝐷𝐹̅̅ ̅̅ ∥ 𝐴𝐵̅̅ ̅̅  2. Given 

3. ∡𝐴𝐸𝐵 = 30° 3.  Angles in a triangle sum to 180° (1) 

4. ∡𝐶𝐷𝐹 = 80° 4.  When parallel lines are cut by a transversal, 

corresponding angles are equal in measure (1, 2) 

5. ∡𝐷𝐹𝐶 = 80° 5.  Angles in a triangle sum to 180° (1, 4) 

6. ∡𝐵𝐷𝐹 = 60° 6.  When parallel lines are cut by a transversal, alternate 

interior angles are equal in measure (1) 

7. Δ𝐴𝐶𝐵 is isosceles  7.  Triangles whose base angles have equal measures are 

isosceles (1) 

8. 𝐴𝐶̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅   8.  Isosceles triangles have congruent legs (7) 

9. Δ𝐹𝐷𝐶 is isosceles  9.  Triangles whose base angles have equal measures are 

isosceles (5, 6) 

10. 𝐶𝐷̅̅ ̅̅ ≅ 𝐶𝐹̅̅̅̅  10. Isosceles triangles have congruent legs (9) 

11.  𝐴𝐷̅̅ ̅̅ ≅ 𝐵𝐹̅̅ ̅̅  11.  Partition postulate (8, 10) 

12. 𝐵𝐴̅̅ ̅̅ ≅ 𝐴𝐵̅̅ ̅̅  12.  Reflexive property 

13. ∆𝐵𝐴𝐷 ≅ ∆𝐴𝐵𝐹 13.  SAS (1, 11, 12) 

14. ∡𝐵𝐴𝐹 ≅ ∡𝐴𝐵𝐷 14.  CPCTC (13) 

15. 𝑚∡𝐵𝐴𝐹 = 60° 15.  Congruent angles have equal measures (14) 

16. 𝑚∡𝐴𝐹𝐷 = 60° 16.  When parallel lines are cut by a transversal, alternate 

interior angles are equal in measure (2, 15) 

17. 𝑚∡𝐷𝐺𝐹 = 60° 17.  Angles in a triangle sum to 180 (6, 16) 

18. ∆𝐷𝐹𝐺 is equilateral 18.  A triangle with all equal angles is equilateral (6, 16, 

17) 

19. 𝐷𝐺̅̅ ̅̅ ≅ 𝐹𝐺̅̅ ̅̅ ≅ 𝐷𝐹̅̅ ̅̅  19.  An equilateral triangle has all congruent sides  (18) 

20. 𝐶𝐺̅̅ ̅̅ ≅ 𝐶𝐺̅̅ ̅̅  20.  Reflexive Property 

21.  ∆𝐶𝐷𝐺 ≅ ∆𝐶𝐹𝐺 21.  SSS (10, 19, 20) 

22. ∡𝐷𝐶𝐺 ≅ ∡𝐹𝐶𝐺 22.  CPCTC (21) 

23.  𝑚∡𝐴𝐶𝐺 = 10° 23. If two congruent angles form an angle, each is half 
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the measure of the angle (1, 22) 

24.  𝑚∡𝐶𝐴𝐹 = 20° 24.  Partition postulate (1, 15) 

25. ∡𝐶𝐴𝐹 ≅ 𝐴𝐵𝐶 

∡𝐴𝐶𝐺 ≅ ∡𝐷𝐴𝐸 

25. Angles with the same measure are congruent (1, 23, 

24)  

26. 𝐶𝐴̅̅ ̅̅ ≅ 𝐶𝐴̅̅ ̅̅  26.  Reflexive Property 

27.  ∆𝐴𝐶𝐺 ≅ ∆𝐶𝐴𝐸 27. SAS (25, 26) 

28. 𝐴𝐺̅̅ ̅̅ ≅ 𝐶𝐸̅̅ ̅̅  28.  CPCTC (27) 

29. ∆𝐴𝐶𝐹 is isosceles 29. Triangles with base angles that are equal in measure 

are isosceles (1, 24) 

30. 𝐴𝐹̅̅ ̅̅ ≅ 𝐶𝐹̅̅̅̅  30.  Isosceles triangles have congruent legs (29) 

31. 𝐹𝐺̅̅ ̅̅ ≅ 𝐹𝐷̅̅ ̅̅  31.  Partition postulate (28, 30) 

32. 𝐹𝐺̅̅ ̅̅ ≅ 𝐹𝐸̅̅ ̅̅  32.  Transitive Property (19) 

33. ∆𝐹𝐸𝐷 is isosceles 33. A triangle with two congruent sides is isosceles 

34. ∡𝐸𝐷𝐹 ≅ ∡𝐷𝐸𝐹 34.  Isosceles triangles have congruent base angles 

35. 𝑚∡𝐷𝐸𝐹 = 50° 35.  Angles in a triangle sum to 180 (5, 34) 

36. 𝑚∡𝐴𝐸𝐷 = 20° 36. Partition postulate (3, 35) 
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Name: ___________________________________  Date: _________________ 

Sectors in Circles Classwork 

Warm-up: Circle A is shown to the right.  The length of 

diameter 𝐴𝐵̅̅ ̅̅  is 8.  Find the area of each sector.   

Area of circle C = 16𝜋 

Sector CAE: 
30

360
∙ 16𝜋 =

4

3
𝜋 

Sector CEF: 
90

360
∙ 16𝜋 = 4𝜋 

Sector CFB: 
60

360
∙ 16𝜋 =

8

3
𝜋 

Sector CBD: 
60

360
∙ 16𝜋 =

8

3
𝜋 

Sector CAD: 
120

360
∙ 16𝜋 =

16

3
𝜋 

 

 

 

 

Problem Set: 

Prove that the shaded area of the semicircle is equal to the area of the inner circle. 

 
Let r be the length of the radius of the semicircle.  Then, r is the diameter of the inner 

circle and 
𝑟

2
 is the radius of the inner circle.  Therefore the area of the semicircle is 

𝜋𝑟2

2
 

and the area of the inner circle is 
𝜋𝑟2

4
.  The area of the shaded region is the difference of 

the area of the semicircle and the area of the inner circle and hence can be found as 

follows: 

𝜋𝑟2

2
−

𝜋𝑟2

4
 

=
𝜋𝑟2

4
 

Therefore, the area of the shaded area of the semicircle is equal to the area of the inner 

circle.   

  

90
30

60

C

A

B

D

E

F
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What percentage of the sector OAB is taken up with the inner circle? 

 

Let r be the radius of the circle and let Y be the 

center of the circle.  Then OY can be found using 

the Pythagorean Theorem and therefore has length 

𝑟√2.  We then know that the radius of the quarter 

circle is 𝑟√2 + 𝑟 = 𝑟(√2 + 1).   

 

Then we know that area of the semi-circle is 𝜋𝑟2, 

while the area of the quarter circle is 
𝜋(𝑟√2+𝑟)

2

4
.  

Therefore, the area of the inner circle is 
4

3+2√2
=

68.6%.   

 

 

 

 

The diagram below shows rectangle ABCD with height 10 cm.  An arc with center at 

point B is drawn from point A to side 𝐵𝐶̅̅ ̅̅ .  An arc with center at point C is drawn from 

point D to side 𝐵𝐶̅̅ ̅̅ .  Given that the 

shaded regions a and b have equal 

area, determine the length of 𝐵𝐶̅̅ ̅̅ .   

 Let the regions a and b have area x.  

Then we know that the area of both 

quarter circles is 
100𝜋

4
= 25𝜋 and 

hence the nonshaded region of each 

quarter circle is 25𝜋 − 𝑥.  Therefore 

the area of the entire rectangle is 

25𝜋 − 𝑥 + 25𝜋 − 𝑥 + 𝑥 + 𝑥 =

50𝜋.  If the area of the rectangle is 

50𝜋 and the height is 10, the length 

of BC must be 5𝜋.  

r r 
Y 
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Name: ______________________________________  Date: ____________ 

 

Cutting the Cake – Classwork 

 

Warm-up: You order a pizza for your friends.  The pizza has a diameter of twenty-four 

inches.  If you cut the pizza into six equal slices, what will the area of each piece be?   

 

Area of pizza = 144𝜋 

Each piece = 
144𝜋

6
= 24𝜋 

 

 

 

 

 

 

 

Problem Set 

You are halfway through a party and twelve people are there.  You decide to cut the 

circular cake with a diameter of 10” into 12 equal pieces. 

1. What is the area of the top of each piece of cake? 

Area of cake = 25𝜋 

Area of each piece = 
25𝜋

12
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2. Before you get a chance to serve the cake, twelve more people arrive.  You 

already cut the twelve pieces out of the cake, but decide you can still make equal 

slices by cutting out a concentric circle in the cake to make 24 pieces.  How far 

from the center of the cake should the circle be made so that all 24 people get the 

same amount of cake? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  What is the area of each segment of cake?  How much cake will each person 

receive?  

Each person will receive 
25𝜋

24
 square inches of cake.  

25𝜋

2
= 𝜋𝑟2 

The inside must have half the area of the 

entire circle and therefore must have an 

area of 
25𝜋

2
.  We can solve for the radius 

of the inside portion of the cake as 

follows: 

Therefore the radius of the inside portion 

must be 
5√2

2
. 

The cut should be made 
5√2

2
 inches from 

the center of the cake. 
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Cutting the Cake – Homework 

As you are just about to make your concentric circle cut, one lady speaks up.  “Women 

usually eat less than men.  Since there are 12 women and 12 men here, maybe you should 

make the pieces for the men twice as big as the pieces of the women.”  You decide this is 

a good idea.  How far from the center of the cake should the circle cut be made so that the 

outside pieces are twice as big as the inside pieces?    

 

  

25𝜋

3
= 𝜋𝑟2 

The inside must have one-third the area 

of the entire circle and therefore must 

have an area of 
25𝜋

3
.  We can solve for 

the radius of the inside portion of the 

cake as follows: 

Therefore the radius of the inside portion 

must be 
5√3

3
. 

The cut should be made 
5√3

3
 inches from 

the center of the cake. 
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