To **check** the values of an **absolute value equation** or **inequality** using your TI-83+ or TI-84+ calculator, follow these steps:

- **1.** Isolate the absolute value (get the |.....| by itself).
- 2. Whatever is on the left of the =, <, >, \leq , or \geq , goes into Y₁ on your calculator.
 - a. If it is an absolute value expression (has |.....|), this is entered into your calculator by pressing ` 0 (which is ≠) and the first function is abs (which stands for absolute value. Place whatever is in between the |.....| exactly as you see it and close the parentheses))
- **3.** Whatever is on the right of the =, <, >, \geq , or \leq goes in Y₂ on your calculator.
- 4. Press # 6 to see if you can see where the graphs intersect.
 - a. If an equality:
 - i. If you can see the intersections, then you can determine the *x*-values where the equation is solved (è ulate them!)
 - ii. If you cannot see the intersections, change your @ until you can, then see Step i. above.
 - b. If an inequality:
 - i. If they are asking for < or \le , you are looking for values **below** the horizontal line and you will be using an **and** (______< x < ____)
 - ii. If they are asking for > or \geq , you are looking for values **above** the horizontal line and you will be using an **or** ($x < __$ or $x > __$)

Example 1:

Solve
$$|x-3|-2=5$$
.

• Get |x - 3| by itself:

|x - 3| = 7

Put |x - 3| in Y₁:

Plot1 Plot2 Plot3	
\Y1∎abs(X-3)	
NY2 ⊟7 ∎	
\Y3=	
1.245	
NY5= NU2=	
••••	

2 Press #

You can see where the graphs intersect, but let's change the @ to see them better.

6

\Theta Set Xmax = 12 and press %

WINDOW Xmin=-10 Xmax=12∎ Xscl=1 Ymin=-10 Ymax=10 Yscl=1 Yscc=1	
Xres=1	

• You can see where the graphs 5: i nt ersect better now. Find the values using \dot{e} (\dot{s}). The values are $x = _$ and $x = _$.

Name: _

Date: _____

Graph the solution of |x-3| = 5:

Example 2:

Solve: $3|2x+3|-1 \le 14$

• Remember, *isolate* the |.....| first!

 $|2x+3| \le 5$

2 Enter the left hand side into Y_1 and the right hand side into Y_2 :

Only y-values less than or equal to 5 are being sought! These are indicated as those **under** the horizontal line*! Find where the graphs 5: i nt er s ect :

For what values of *x* is the graph of the absolute value (the "V"-shaped graph) **below the horizontal line**?* Between _____ and _____. Our solution then is:

 $__ \le x \le __$ and the graph:

+++>

Practice:

Solve and graph the solution set of:

a.	x+2 =3	b. $4 2x$	-1 >8	c.	1 - x	< 5
		0.121	1 > 0	•••	1	1.5

