PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 131, Number 2, Pages 593-599

S 0002-9939(02)06588-7

Article electronically published on June 12, 2002

GENERALIZED SCHWARZ-PICK ESTIMATES
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ABSTRACT. We obtain higher derivative generalizations of the Schwarz-Pick
inequality for analytic self-maps of the unit disk as a consequence of recent
characterizations of boundedness and compactness of weighted composition
operators between Bloch-type spaces.

1. INTRODUCTION

Part of the Schwarz-Pick inequality, sometimes called the invariant Schwarz in-
equality, says that whenever ¢ is an analytic self-map of the unit disk D, then

P I = =) _
L—lo(z)PP  —
for all z in D. If C, is the composition operator defined by C,(f) = f o ¢ for f
analytic in D, the Schwarz-Pick inequality directly yields the boundedness of all
composition operators on the classical Bloch space. We will prove the following
generalized Schwarz-Pick estimates.

Theorem 1. Forn > 1 and ¢ an analytic self-map of D,

(n) 1— 2\n
o PPN P

zed 1= o(2)?

Our proof of this theorem will be an application of boundedness criteria for
weighted composition operators between various Bloch-type spaces recently ob-
tained in [3]. These Bloch-type spaces and boundedness criteria for weighted com-
position operators will be discussed in the next section, which also contains the
proof of the above theorem. A natural generalization of the above result is given in
Theorem [3] when ¢ satisfies an additional condition. In Section 3 we give “little-
oh” versions of Theorems [[]and B, and in Section 4 we briefly discuss converses to
our main results.

2. PROOF OF THE MAIN THEOREM

The Bloch-type spaces we consider here are defined by
B® = {f analytic in D : sup(1 — |2|?)¥|f'(2)| < oo}.
z€D
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These become Banach spaces with norms |f(0)| 4+ sup{(1 — |2|?)®|f'(2)| : z € D}.
The range of the parameter a can be taken to be 0 < o < 00, although our interest
here is restricted to the case @ > 1. Note that o = 1 gives the classical Bloch
space B. A weighted composition operator uC,, is defined for analytic « on D and
analytic self-map ¢ of D by uCy,(f) = u(f o). A characterization of boundedness
of uCy, from B* to BP is given in Theorem 2.1 of [3]; this characterization depends
on whether 0 < o < 1, « =1, or « > 1. Here we will only make use of the o > 1
case:

Theorem 2 ([3]). When o> 1 and 8 > 0 the weighted composition operator uCl,
maps B boundedly into BP if and only if

e’ o
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Theorem Plis the key ingredient in our derivation of the generalized Schwarz-Pick
estimates. The other ingredient is the observation that since f € B¢ if and only
if f' € B!, and all composition operators are bounded from B! to B!, it follows
that the operators D"C,, are bounded from B' to B"™! for all n > 1 and all ¢,
where D™ denotes the n'”* derivative operator.

Proof of Theorem [l For n = 1, the result is the classical Schwarz-Pick inequality.
The rest of the argument proceeds by induction, however it is instructive to look
explicitly at the n = 2 case. For this, note that DC,, is bounded from B! to B2
for all ¢, as noted above. We have DC,(f) = (f' o ¢)¢’. Thus the weighted
composition operator ¢’C,, is bounded from B? to B2, since f € B! if and only if
f’ € B2. In particular by (b) of the boundedness criteria above we have the desired
statement for n = 2.

Now fix an integer n > 2 and assume by induction that the generalized Schwarz-
Pick estimates hold for all positive integers less than or equal to n. We will show that
the estimate holds for n + 1. Consider the bounded operator D"C,, : B! — B"T1.
If we can show that ga(”)GP is bounded from B2 to B"*!, then again part (b) of
the boundedness criteria above will yield the generalized Schwarz-Pick estimate
for n + 1. To see why the boundedness of <p(")C¢, : B?2 — B"*! follows from the
boundedness of D"C,, : B* — B"*! we consider the expansion of D"(f o ) =
(f 0 ©)(™ by Faa di Bruno’s formula (see, for example, [4]):

n! L @ (2)\ ™
o)) =% e P I (52

=N

where £ = k1 + ko + -+ 4+ k, and this sum is over all non-negative integers
ki, ko, -, ky satisfying k1 + 2ks + - - - +nk, = n. In particular, one of the terms of
this sum is f/(¢(2))¢™ (2) and the remaining terms involve products of f*) o o(2)
(1 < k < n) with products of derivatives of ¢. Writing Faa di Bruno’s formula in
operator notation we have

(1) pc, =Y n! T(22)" o pr
Y L Tkl ket 1L\ T v

j=1
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With k,, = 1 (and therefore also k1 = ko = -+ = k,—1 = 0) we obtain on the right
the term (™ C,D. If k,, = 0 we obtain (constant multiples of) the terms

n—1 N
I1 (¢<J>> C,DF,
j=1

where k = k1 + -+ kp—1, and k; +2ko + - + (n — 1)kj,—1 = n. Set

(2) 1:[ (SO(J) )

where the non-negative integers ki,...,k,—1 are as just described. Our goal is
to show that each weighted composition operator uC,, is bounded from B**! to
B™*1L: this together with the boundedness of D"C,, : B! — B"*! will imply the
boundedness of <p(")CQP from B? to B"*!. To show that uCl, is bounded from Bkt1
to B! we must verify conditions (a) and (b) of Theorem

For condition (a) we observe that the product

_ n+1
(1—12?) )

T P

can be written as

(1= 2B N T = 22 ()]
®) < T 1o(=)P ) H( P ) ’

Jj=2

sincen+1= (k1 +1)+2k2+---+ (n—1)k,_1. Using the induction hypothesis we
see that

(o)< o
S ey MNP (@] < 0o

For condition (b) of Theorem [2, notice that

ki—1 . nt . k;j
4) Zk (#"@) " ¢ @ IT (#96)
=L
We claim that
1 — |z]2)nt?
sup( 12) =lu'(2)] < oo.

zep (1= [p(2)?)

To see this, note that when k; # 0 we see by the induction hypothesis that

QD H ‘so“)

Jj=1,j#i

’@‘“ ()"

is bounded above by a constant multiple of

L= lp@PR " 1-lp)P T (1-le@P\Y (1= lez)?)*
®) T gD <1—|z|2>i+1j_1}#<<1—|z|2>j) T P

and our claim follows.
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Conditions (a) and (b) in Theorem 2 are satisfied and the operator uC, maps
B**! boundedly into B”*!. The operator D* maps B* boundedly onto B¥*!. Thus,
for each k as above with k, = 0, the operator

T (o0 ¢ ph
]1;[1 (SO ) ®

maps B! boundedly into B"*!. We conclude that (") C,D maps B! boundedly
into B**1. Since D maps B! onto B2, the weighted composition operator (™ Cy
maps B? boundedly onto B"*!. By condition (b) of Theorem [ this implies that

(1 _ |Z|2)n+1 (1 _ |Z|2)n+1
1—p(2)? 1—o(2)?

is bounded. This completes the induction, and the proof. [l

eV (2)] = (™)' (2)]

Theorem [I] can easily be generalized as follows.

Theorem 3. Let ¢ : D — D be an analytic map such that

(1= 12*)%l¢' (2)]

sup < o0
zep (1 —1e(2)]?)*

for some a, 3 > 0. Then for each integer n > 2,

2 n—1 n

o (L D)

S e
Proof. The hypothesis insures that C, is bounded from B* to B? ([3], Corollary 2.4)
so DC,, is bounded from B* to B#*1. Since DC, = ¢'C,D it follows that ¢'Cl,
must be bounded from B+ to BS*!. Part (b) of Theorem [ gives the desired
conclusion for n = 2. We proceed by induction in much the same way as was done
in the proof of Theorem [[I Assume the result holds for all positive integers less
than or equal to n. To obtain the result for n + 1 we show that <p(")C’¢ is bounded
from B! to B, and then appeal to Theorem Pl As in the proof of Theorem [I]
boundedness of ga(”)GP will follow from the boundedness of D"C,, from B* to B#+"
and () if we can show that uC,, is bounded from B*** to B*" 1 < k < n, when
w is given by ([@). Condition (a) of Theorem [ follows from the observation that

(1= |z*)7n

|u(z)|W|<ﬁ( z)|
_ a1 % )| 1—[2[?) oY (2)]
(1 =e(2) H( 1 - |p(2)[? )

The first factor is bounded on D by hypothesis, and the other factors are bounded
on D by Theorem [l
Similarly, to check condition (b) we must show that

W/ (2)| (1 — |27+
(1= Jp(z)[)otkt
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is bounded on D. Using the expression for u'(z) given in (@) this follows by observing
that for k; > 1 the expression

‘@‘“ (=)

QD H ‘so“)

Jj=1,j#i

is bounded above by a constant multiple of

(1= lp()P)* A= lp)P)% " T (1=le) P\ 1 —|p@)?)* !
I (%) -

(1= [z?)P+ (1= [22)itk=D) (1= 1z[?)! (I —[e2)otn

j=1,5#i

which gives the desired result. This completes the verification of the boundedness
of uCy, from B** to BA*" and the theorem follows exactly as in Theorem [l [

3. THE HYPERBOLIC LITTLE BLOCH CLASS

Recall that an analytic self-map of the disk ¢ is said to be in the hyperbolic little
Bloch class Bl if

e =PI
z-1 1= e(2)]?

Note this implies in particular that ¢ is in the little Bloch space By, the subspace
of B consisting of Bloch functions f satisfying lim,_- |f'(w)|(1— |w|*) = 0. The
hyperbolic little Bloch class appears in the characterization of those composition
operators which are compact on the little Bloch space: C, is compact from By to
itself if and only if ¢ € BE (]2], Theorem 1).

A particular case of the next result shows that functions in the hyperbolic little
Bloch class satisfy a little-oh version of our generalized Schwarz-Pick estimates.

Theorem 4. Let ¢ : D — D be an analytic map such that
1— 2\B1, A
i (= EEV G _
st (1= lp(2)[?)”
for some a, 3 > 0. Then for each integer n > 2,

_ | »]2\B+n—1] 5(n)
i L 21) |f @l
2| -1~ (1= Jp(2)[2)>

In particular, if ¢ € BE, then

— |z|2)n| ()
o Q=P

2| 51~ 1 —Jp(2)]?

for every positive integer n.

Theorem [ can be proved by similar techniques to those employed in Theorem []
using Theorem 3.1 of [3] which characterizes compactness of weighted composition
operators from B§ to Bg by little oh analogues of (a) and (b) of Theorem 2 We
omit the details.
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4. CONVERSE RESULTS

For certain positive o and 3 the implications in Theorem 3 and Theorem Hl are
actually logical equivalences.

Theorem 5. Let ¢ be an analytic self-map of the unit disk and 3 > « > 0. Then

1— 2\B1, A
o LRI

zep (1= lep(2)[?)*

if and only if

1— 2\B+n—1], ,(n)
p (L ERSeE)
e (1=1e(2)]?)

for each positive integer n.
Furthermore,

e (L= 2 (2)

=0
lzl=1= (1 —|p(z)[?)~
if and only if
_ |5|2)B+n—1|,(n)
i L2 |2<P @l
|2 —1- (1= le(2)[?)~

for each positive integer n.

We do not give the proof of this result here, but note that the interest in the first
part of Theorem [Blin the “if” direction is when 0 < o < 8 < 1, as the condition

1— 2\B 1|, A
o LD G]_

zep 1= p(2))?)e

holds automatically for all self-maps when o < 3 and g > 1.
The “if” directions of the two statements in Theorem [ need not hold if 8 < a.
For example, if n > 2 and ¢(z) = %z"‘l + %, then ¢(™)(2) = 0 so that
(n) 1— 2\B+n—1 (n) 1— 2\f+n—1
o BEUO R ) P
z€D (1= [p(2)[*)" |21~ (1= le(2)[*)

=0

for any a, 8 > 0. However if we consider z = r € (0,1) we have that

(1= )7’ (r)|
(1 = e (r)[?)"

is unbounded as r — 17 if 3 < «, and tends to a finite positive constant as r — 17 if

[ = «. Thus the hypothesis o < 3 is sharp for the second statement in Theorem B]
and close to sharp for the first statement.
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