
EXTRACTING SPATIOTEMPORAL OBJECTS FROM RASTER DATA TO REPRESENT

PHYSICAL FEATURES AND ANALYZE RELATED PROCESSES

J. A. Zollweg a, *

a Dept. of the Earth Sciences, The College at Brockport, 350 New Campus Drive, Brockport, NY 14420 USA –

jzollweg@brockport.edu

KEY WORDS: feature extraction, remote sensing, object-oriented modelling, storm elements

ABSTRACT:

Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time

intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We

live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don’t see millions of cubes of atmosphere; we see a

thunderstorm ‘object’. Temporally, we don’t see the properties of those individual cubes changing, we see the thunderstorm as a whole

evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of

relevant spatiotemporal objects, thereby matching the human brain’s perception of the world. This presentation reveals an efficient

algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python

object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the

GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and

characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA’s High-Resolution Rapid

Refresh v2 (HRRRv2) data stream.

1. INTRODUCTION

We are lucky to have access to remotely-sensed data in ever-

increasing variety, quality, and frequency. Numerous ground-

based, airborne, and orbiting platforms provide data of

remarkable spatial resolution at short time intervals. However,

this spatiotemporal feast of data is most valuable if it can be

processed into information. This processing greatly reduces the

sheer volume to be dealt with, and more importantly, creates

meaning from the raw data collected from the sensors.

The concept of an object is key. We live in a world of objects:

cars, buildings, farms, watersheds, thunderstorms, etc. On a

stormy day, we don’t look out the window to see millions of

small cubes of atmosphere; rather we see a thunderstorm

‘object’. Temporally, we don’t see the properties of all those

individual cubes changing; we see the thunderstorm as a whole

evolving and moving. The goal of creating information can be

achieved by representing temporal changes in a vast numbers of

land patches or atmospheric cubes (as remote sensors see the

world) as a small number of relevant spatiotemporal objects (to

match the way the human brain perceives the world).

Fortunately, the computational sciences provide a highly

effective way to identify and represent objects (physical features

as well as data structures) by using a tool called object-oriented

programming. Python (a free and open-source, object-oriented

computing language) can be used to extract the objects/features

from raster-formatted remotely-sensed data. Among the

resources available in many Python implementations are

SciPy/NumPy for matrix manipulation and scientific

computation, the Python Imaging Library (PIL), and interfaces to

allow data export/import to the Geographic JavaScript Object

Notation (GeoJSON) standard object data format.

The tools/procedures documented in this project are intended to

enable analysis of a particularly difficult variety of

spatiotemporal data. Specifically, it handles data that is obtained

using remote sensing and is in raster format. Most importantly,

the target data is continuously variable over space, and does

NOT exhibit clear edges. Examples of data that fit the criteria

are:

- most atmospheric data

- elevation / geomorphologic data

- soil property extent

- ecological data such as extent of droughts,

plant disease epidemics, and species home

ranges

- areal extent of excessive noise environments

- boundaries of human geographies such as

high crime areas, retail business

catchments, areas with inadequate access to

services

The specific examples in this paper will show how thunderstorms

can be identified and characterized in a spatiotemporal

continuum using a Python program to process raster data from

NOAA’s High-Resolution Rapid Refresh v2 (HRRRv2) data

stream.

2. DATA AND PROCEDURES

2.1 High-Resolution Rapid Refresh (HRRR) Data

The source data for this example is the High-Resolution Rapid

Refresh Data (HRRR). From the NOAA website: “The HRRR

is a NOAA real-time 3-km resolution, hourly updated, cloud-

resolving, convection-allowing atmospheric model, initialized by

3km grids with 3km radar assimilation. Radar data is assimilated

in the HRRR every 15 min over a 1-h period adding further detail

to that provided by the hourly data assimilation from the 13km

radar-enhanced Rapid Refresh. (NOAA-ESRL).” While NOAA

characterizes this data as model output, it could be more

accurately be described as model-enhanced remotely sensed data

due to the frequent, major contributions of various forms of real-

∗Corresponding author

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

87

time radar and sounding data to model runs. Also, the data is

[x,y,z] formatted (geographic location plus a single value) and is

therefore identical in form to remotely sensed data. HRRR data

is massive in scope. It has 3 km spatial resolution over the whole

continental United States, it is refreshed as often as every 15

minutes, and contains over 70 atmospheric parameters.

For this study, the composite reflectivity parameter was used.

This represents the radar reflectance signal, and is an indicator of

the amount of falling precipitation that exists in the lower

atmosphere. Note that the units of composite reflectivity are

dBZ (decibels relative to Z). This is a logarithmic dimensionless

measure of the “bounce back” of a weather radar signal from

raindrops. As such, it is an excellent single parameter indicator

of the presence of storms producing intense precipitation. Note

that it is also familiar to television viewers as the generic

‘weather radar’.

Shown below is an illustration (using ArcMap to enable

symbology and basemap) of a sample of HRRR data. It show

the target parameter (composite reflectivity) for June 12, 2016 at

12:00 GMT , clipped to a region around Texas that shows

substantial activity, not surprising for that area in the early

evening in June.

Figure 1. Data set from HRRR: composite reflectivity from June

2, 2016, 1200 GMT

2.2 Weather and Climate Toolkit

The HRRR data is created and distributed in a format called

GRIB2. This is a highly efficient data format which allows

condensed storage a massive data sets consisting of numerous

parameters. From the NOAA website: “NOAA's Weather and

Climate Toolkit (WCT) is free, platform independent software

distributed from NOAA's National Centers for Environmental

Information (NCEI). The WCT allows the visualization and data

export of weather and climate data, including Radar, Satellite and

Model data. The WCT also provides access to weather/climate

web services provided from NCEI and other organizations. The

data export feature supports conversion of data to a variety of

common formats including GeoJSON, KMZ, Shapefile, Well-

Known Text, GeoTIFF, ESRI Grid and Gridded NetCDF. These

data export features promote the interoperability of weather and

climate information with various scientific communities and

common software packages such as ArcGIS, Google Earth,

MatLAB, QGIS, R and many more. (NOAA-NCEI)”. Hence,

the WCT allows convenient extraction of specific data layers

from the efficient but opaque GRIB2 format. For greatest clarity

the Storm Object Extraction Model (next section) uses data in a

simple ESRI format (shown below). Use of this simple, common

data format allows the possibility of the extraction procedure to

be applied to other clustering or object-creation applications

outside of meteorological studies.

Figure 2. ESRI GRID format (from Wikipedia,

https://en.wikipedia.org/wiki/Esri_grid)

2.3 Storm Object Extraction Model (SOEM)

The Storm Object Extraction Model (SOEM) is a Python

program (using the Enthought Canopy Python distribution)

which identifies individual storm elements from the mass of raw

HRRR data. A general outline of the algorithm used is:

1. Identify cells that will serve as storm element centers

a. Use the minimum reflectivity (rainfall intensity) that

allows a particular cell to constitute a storm element

center. This is a user-defined parameter

b. Use the minimum separation between storm elements.

This is a user-defined parameter

c. Use the NumPy maximum_filter routine to make a list of

storm centers to use as starting points. NumPy is a

Python array computation package.

2. Create an additional list of all cells that may be part of a storm

element

a. Use minimum reflectivity to decide if a cell can be part of

a storm element. This is a user-defined parameter.

3. Assign each member of the list in (2) above to one of the

storm element centers

a. If needed, carve a dividing line between storm centers to

ensure proper separation of storm elements

b. At the end of this process there will a set of lists with

each list containing the cells belonging to a single

storm element.

4. Characterize each storm element by examining the list of cells

that constitutes it. This will create an object with the

following properties:

a. Geographic characteristics such as areal extent, location

of centroid, size, etc.

b. Average value of the composite reflectivity

c. Other meteorological characteristics of interest, such as

rainfall amount/intensity, winds, vertical motion

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

88

https://en.wikipedia.org/wiki/Esri_grid

5. Optionally, examine each storm element to determine if there

are embedded sub-storm elements within it using the same

process as described above.

6. Store the storm objects in convenient format. It is possible to

use the GeoJSON import/export utility in Enthought

Canopy Python to capture/store each of the storm elements

identified in a compact database, including its geographic

coordinates and any desired attributes. The result is

creation of a small number of “intelligent” objects

representing the storm elements at a particular time, instead

of a mass of raster data.

The user-defined parameters are essential as they provide great

flexibility. The SOEM can be applied to widely varying scales

(i.e. nationwide versus regional scale), detection levels, and

storm complexity. The overall algorithm and the user-defined

parameters accommodate various ambiguous situations, such as

those illustrated below:

Figure 3. Two common situations that introduce ambiguity in

storm definition: (a) two distinct storms incorrectly joined

together as one (b) storm sub-elements embedded within storm

elements (from Han, L., et. al., 2009).

3. RESULTS

3.1 Simple test case for illustration

For clarity and brevity, the model functionality is initially

illustrated by a simple 7 by 9 cell ‘study area’, shown below.

This case was designed to show two clearly defined areas of

activity (middle of column 2 and middle of row 3), as well as one

marginal area (middle-right of row 7).

Figure 4. Simple test case – visualized. Color range from green

(low values) to red (high values)

Figure 5. Simple test case – represented as raster input data

3.2 Results for simple test case

Below are shown several visualized results. In Figure 6, the user

assigned parameter was set to indicate a low threshold for

inclusion in a storm element. The total area assigned is large,

and the whole active area accumulated to one storm element.

Figure 6. Simple test case – low threshold for inclusion in storm

element

In Figure 7, the user assigned parameter was set to indicate a

moderately high threshold for inclusion in a storm element. The

total area assigned is fairly large, and the area is well segmented

among the three (expected) storm elements.

Figure 7. Simple test case – moderately high threshold for

inclusion in storm element

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

89

In Figure 8, another user-assigned parameter was set to indicate a

high threshold for a cell to serve as the center/origin of a storm

element. In this case, the marginal area (middle-right of row 7)

does not identify as a separate storm element, and the cells are

absorbed into another storm element.

Figure 8. Simple test case –high threshold for being a storm

element center

3.3 Results for real data

The Storm Object Extraction Model was run for the actual High

Resolution Rapid Refresh Data set of June 2, 2016 that is shown

in Figure 1. The data set has 1362 rows by 2264 columns, for a

total of 3,083,568 cells. It represents about 1/8 of the total area

of the continental United States at a 3km x 3km resolution. The

seven storm elements identified are shown in Figure 9 (compare

with the raw data of Figure 1).

Figure 9. June 2, 2016 actual HRRR data

The model run was completed in approximately 2.4 seconds on a

Dell Optiplex 3020 with a Core i5 processor. As the algorithm

execute time increases at O(n ln n) it is possible to extract storm

elements on a continental scale much faster than the refresh rate

of the HRRR data (every fifteen minutes), even on a very

mediocre computer.

3.4 Case study: Central New York flash floods of July 1,

2017

In Central New York on July 1, 2017 there was a wave of severe

storms resulting in flash flooding serious enough to warrant

national news coverage,

https://www.washingtonpost.com/video/national/heavy-rain-

causes-flash-flooding-in-central-new-

york/2017/07/03/58388e7c-600c-11e7-80a2-

8c226031ac3f_video.html

In order to study this event it is useful to identify, characterize,

and track the storm elements that passed through Central New

York causing very heavy precipitation. The SOEM model was

applied to the composite reflectivity data from HRRR from 10Z

and 11Z (Z refers to Zulu or UTC – Universal Time Coordinated

or GMT – Greenwich Mean Time). The raw HRRR data is

shown in Figures 10 and 11.

Figure 10. Composite reflectivity. 10Z July 1, 2017 showing

severe weather approaching Central New York.

Figure 11. Composite reflectivity. 11Z July 1, 2017 showing

severe weather affecting Central New York.

The SOEM model was run on the HRRR data employing the

user-defined parameters of 33 dBZ for the minimum value for

membership in a storm element and 50 dBZ for the minimum

value to establish a storm center. Figures 12 and 13 show the

individual storm elements identified by the SOEM model.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

90

https://www.washingtonpost.com/video/national/heavy-rain-causes-flash-flooding-in-central-new-york/2017/07/03/58388e7c-600c-11e7-80a2-8c226031ac3f_video.html
https://www.washingtonpost.com/video/national/heavy-rain-causes-flash-flooding-in-central-new-york/2017/07/03/58388e7c-600c-11e7-80a2-8c226031ac3f_video.html
https://www.washingtonpost.com/video/national/heavy-rain-causes-flash-flooding-in-central-new-york/2017/07/03/58388e7c-600c-11e7-80a2-8c226031ac3f_video.html
https://www.washingtonpost.com/video/national/heavy-rain-causes-flash-flooding-in-central-new-york/2017/07/03/58388e7c-600c-11e7-80a2-8c226031ac3f_video.html

Figure 12. Storm elements for 10Z July 1, 2017 (compare with

Figure 10).

Figure 13. Storm elements for 11Z July 1, 2017 (compare with

Figure 11).

At 10Z there are a total of 18 storm elements, and at 11Z there

are a total of 12 storm elements. Although the overall storm

system overall greatly increased in severity, some individual

storm elements died out or were absorbed between 10Z and 11Z.

The conversion of the masses of HRRR composite reflectivity

data to a handful of clearly defined and characterized storm

elements enables meteorological scientists and forecasters to

more easily study the evolution of these systems.

4. CONCLUSIONS AND SIGNIFICANCE

4.1 Efficient and effective application program

The algorithm that drives the Storm Object Extraction Model

(SOEM) is efficient and clear. It can also be easily modified to

suit the needs of other scientists and applications such as those

described at the end of the introduction (i.e. spatial ecology,

human geography, topography).

4.2 Need to capture HRRR data in a form amenable to

convenient analysis

The National Oceanic and Atmospheric Administration of the

U.S. Department of Commerce reports that 20 Terabytes of

weather-related data are created EVERY DAY. In fact, much of

this information is not even archived, due to storage and

processing constraints. The Storm Object Extraction Model will

allow interested scientists to capture the essence of this data (in

the form of objects representing the important storm elements

that occur. These weather objects can then very conveniently be

used for study and analysis of ‘exciting’ weather without the

need to search and abstract from multiple petabytes of data.

4.3 Enhances downstream analysis and processing of

spatiotemporal data

One of the goals of SOEM is to reduce the size of, and add

meaning to, large raster data sets. As stated earlier, people are

able to cope very effectively with the real world because our

brains process and perceive objects (cars, people, fields,

buildings, etc). The SOEM puts this power in the hands of

environmental scientists with respect to their masses of digital

data about the world. The SOEM also helps identify very

important, small, short-lived phenomena such as intense

convective cells in the atmosphere (thunderstorms). These can

develop very rapidly into high winds, tornados, flash flood

precipitation, hail, and other very dangerous weather. By

identifying the fairly small areas occupied by these storms (10-

30 miles in diameter) one can proceed immediately to very short

time step analyses in an effort to forecast their development on a

minute-by-minute and mile-by-mile basis using such tools as

cellular automata modelling. Waiting for model refresh of the

overarching continental models is likely to miss completely the

growth and dissipation of highly local events, or at least greatly

reduce the potential warning time for people in the area.

4.4 Many other spatiotemporal / environmental data sets

can be treated in the same way

There are other spatiotemporal data sets that could benefit from

similar object extraction models, which can be based on the

successful SOEM algorithm. In fact, any massive raster data set

with continuously varying values that also change (relatively)

rapidly over time can be subject to object extraction. It is

especially useful/important for data that contain objects with

fuzzy boundaries. Some examples include remotely sensed data

of:

drought areas

extent of insect or plant disease outbreaks

progress of urbanization

flood extent

wildfire spread

changes in volcano topography indicating impending eruption

The SOEM application is very clear and generic. The user-

defined parameters are not specifically tied to meteorological

analysis, but are used only to set the spatial and value parameters

needed for the extraction. The same parameters (how big does

the cell value have to be for inclusion in an object, how far apart

object centers have to be, etc) will be the same for any

application.

REFERENCES

Benjamin, S.G., et. al., 2016. A North American Hourly

Assimilation and Model Forecast Cycle: The Rapid Refresh,

Monthly Weather Review, 144:4, p. 1669-1694.

DeCaria, A.J., 2016. Python Programming and Visualization for

Scientists, Sundog Publishing, Madison, Wisconsin

Dixon, M., G. Wiener, 1993. TITAN: Thunderstorm

Identification, Tracking, Analysis, and Nowcasting – a Radar-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

91

based Methodology, Journal of Atmospheric and Oceanic

Technology, 10:6, p. 785-797.

Wang, Y. and Panton, D. and Fitt, A.D. (2002) The application

of cellular automata to weather radar. Workshop on Industrial

Applications 2002 (Hong Kong, Jul 8-12, 2002) [Study Group

Report]

Han, L., et. al., 2009. 3D Convective Storm Identification,

Tracking, and Forecasting—An Enhanced TITAN Algorithm,

Journal of Atmospheric and Oceanic Technology, 26, p. 719-

732.

Heistermann, M., et. al., 2015. The Emergence of Open Source

Software for the Weather and Radar Community, Bull. Am.

Meteorol. Soc. 96:1.

Lakshmanan, V., T. Smith, 2010. An Objective Method of

Evaluating and Devising Storm Tracking Algorithms, Weather

and Forecasting, 25:2, p. 721-729.

NOAA-ESRL, 2017. National Atmospheric and Oceanic

Administration-Earth System Research Laboratory website.

https://rapidrefresh.noaa.gov/hrrr/

NOAA-NCEI, 2017. National Atmospheric and Oceanic

Administration-National Centers for Environmental Information

website, https://www.ncdc.noaa.gov/wct/

Savenije, H., M. Hrachowitz, 2017. HESS Opinions

“Catchments as meta-organisms – a new blueprint for

hydrological modelling, Hydrol. Earth Syst. Sci., 21, p. 1107–

1116.

Shah, S., R. Notarpietro, M. Branca, 2015. Storm Identification,

Tracking and Forecasting Using High-Resolution Images of

Short-Range X-Band Radar, Atmosphere. 6, p. 579-606.

Taylor, D, 1990. Object-Oriented Technology: A Manager’s

Guide, Addison-Wesley Publishing Company.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

92

