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ABSTRACT: 

Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time 

intervals.  However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning.  We 

live in a world of objects: cars, buildings, farms, etc.  On a stormy day, we don’t see millions of cubes of atmosphere; we see a 

thunderstorm ‘object’.  Temporally, we don’t see the properties of those individual cubes changing, we see the thunderstorm as a whole 

evolving and moving.  There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of 

relevant spatiotemporal objects, thereby matching the human brain’s perception of the world.  This presentation reveals an efficient 

algorithm and system to extract the objects/features from raster-formatted remotely-sensed data.  The system makes use of the Python 

object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the 

GeoJSON standard geographic object data format.  The example presented will show how thunderstorms can be identified and 

characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA’s High-Resolution Rapid 

Refresh v2 (HRRRv2) data stream. 

1. INTRODUCTION

We are lucky to have access to remotely-sensed data in ever-

increasing variety, quality, and frequency.    Numerous ground-

based, airborne, and orbiting platforms provide data of 

remarkable spatial resolution at short time intervals.  However, 

this spatiotemporal feast of data is most valuable if it can be 

processed into information.  This processing greatly reduces the 

sheer volume to be dealt with, and more importantly, creates 

meaning from the raw data collected from the sensors.   

The concept of an object is key.  We live in a world of objects: 

cars, buildings, farms, watersheds, thunderstorms, etc.  On a 

stormy day, we don’t look out the window to see millions of 

small cubes of atmosphere; rather we see a thunderstorm 

‘object’.  Temporally, we don’t see the properties of all those 

individual cubes changing; we see the thunderstorm as a whole 

evolving and moving.  The goal of creating information can be 

achieved by representing temporal changes in a vast numbers of 

land patches or atmospheric cubes (as remote sensors see the 

world) as a small number of relevant spatiotemporal objects (to 

match the way the human brain perceives the world).   

Fortunately, the computational sciences provide a highly 

effective way to identify and represent objects (physical features 

as well as data structures) by using a tool called object-oriented 

programming.  Python (a free and open-source, object-oriented 

computing language) can be used to extract the objects/features 

from raster-formatted remotely-sensed data.  Among the 

resources available in many Python implementations are 

SciPy/NumPy for matrix manipulation and scientific 

computation, the Python Imaging Library (PIL), and interfaces to 

allow data export/import to the Geographic JavaScript Object 

Notation (GeoJSON) standard object data format.   

The tools/procedures documented in this project are intended to 

enable analysis of a particularly difficult variety of 

spatiotemporal data.  Specifically, it handles data that is obtained 

using remote sensing and is in raster format.  Most importantly, 

the target data is continuously variable over space, and does 

NOT exhibit clear edges.  Examples of data that fit the criteria 

are: 

- most atmospheric data

- elevation / geomorphologic data

- soil property extent

- ecological data such as extent of droughts,

plant disease epidemics, and species home

ranges

- areal extent of excessive noise environments

- boundaries of human geographies such as

high crime areas, retail business

catchments, areas with inadequate access to

services

The specific examples in this paper will show how thunderstorms 

can be identified and characterized in a spatiotemporal 

continuum using a Python program to process raster data from 

NOAA’s High-Resolution Rapid Refresh v2 (HRRRv2) data 

stream. 

2. DATA AND PROCEDURES

2.1 High-Resolution Rapid Refresh (HRRR) Data 

The source data for this example is the High-Resolution Rapid 

Refresh Data (HRRR).  From the NOAA website: “The HRRR 

is a NOAA real-time 3-km resolution, hourly updated, cloud-

resolving, convection-allowing atmospheric model, initialized by 

3km grids with 3km radar assimilation. Radar data is assimilated 

in the HRRR every 15 min over a 1-h period adding further detail 

to that provided by the hourly data assimilation from the 13km 

radar-enhanced Rapid Refresh. (NOAA-ESRL).”  While NOAA 

characterizes this data as model output, it could be more 

accurately be described as model-enhanced remotely sensed data 

due to the frequent, major contributions of various forms of real-
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time radar and sounding data to model runs.  Also, the data is 

[x,y,z] formatted (geographic location plus a single value) and is 

therefore identical in form to remotely sensed data.  HRRR data 

is massive in scope.  It has 3 km spatial resolution over the whole 

continental United States, it is refreshed as often as every 15 

minutes, and contains over 70 atmospheric parameters.   

For this study, the composite reflectivity parameter was used.  

This represents the radar reflectance signal, and is an indicator of 

the amount of falling precipitation that exists in the lower 

atmosphere.  Note that the units of composite reflectivity are 

dBZ (decibels relative to Z).  This is a logarithmic dimensionless 

measure of the “bounce back” of a weather radar signal from 

raindrops.  As such, it is an excellent single parameter indicator 

of the presence of storms producing intense precipitation.  Note 

that it is also familiar to television viewers as the generic 

‘weather radar’.   

Shown below is an illustration (using ArcMap to enable 

symbology and basemap) of a sample of HRRR data.  It show 

the target parameter (composite reflectivity) for June 12, 2016 at 

12:00 GMT , clipped to a region around Texas that shows 

substantial activity, not surprising for that area in the early 

evening in June.  

Figure 1. Data set from HRRR: composite reflectivity from  June 

2, 2016, 1200 GMT 

2.2 Weather and Climate Toolkit 

The HRRR data is created and distributed in a format called 

GRIB2.  This is a highly efficient data format which allows 

condensed storage a massive data sets consisting of numerous 

parameters.  From the NOAA website:  “NOAA's Weather and 

Climate Toolkit (WCT) is free, platform independent software 

distributed from NOAA's National Centers for Environmental 

Information (NCEI). The WCT allows the visualization and data 

export of weather and climate data, including Radar, Satellite and 

Model data. The WCT also provides access to weather/climate 

web services provided from NCEI and other organizations.  The 

data export feature supports conversion of data to a variety of 

common formats including GeoJSON, KMZ, Shapefile, Well-

Known Text, GeoTIFF, ESRI Grid and Gridded NetCDF. These 

data export features promote the interoperability of weather and 

climate information with various scientific communities and 

common software packages such as ArcGIS, Google Earth, 

MatLAB, QGIS, R and many more. (NOAA-NCEI)”.  Hence, 

the WCT allows convenient extraction of specific data layers 

from the efficient but opaque GRIB2 format.  For greatest clarity 

the Storm Object Extraction Model (next section) uses data in a 

simple ESRI format (shown below).  Use of this simple, common 

data format allows the possibility of the extraction procedure to 

be applied to other clustering or object-creation applications 

outside of meteorological studies. 

Figure 2. ESRI GRID format (from Wikipedia, 

https://en.wikipedia.org/wiki/Esri_grid) 

2.3 Storm Object Extraction Model (SOEM) 

The Storm Object Extraction Model (SOEM) is a Python 

program (using the Enthought Canopy Python distribution) 

which identifies individual storm elements from the mass of raw 

HRRR data.  A general outline of the algorithm used is: 

1. Identify cells that will serve as storm element centers

a. Use the minimum reflectivity (rainfall intensity) that

allows a particular cell to constitute a storm element

center. This is a user-defined parameter

b. Use the minimum separation between storm elements.

This is a user-defined parameter

c. Use the NumPy maximum_filter routine to make a list of

storm centers to use as starting points. NumPy is a

Python array computation package.

2. Create an additional list of all cells that may be part of a storm

element

a. Use minimum reflectivity to decide if a cell can be part of

a storm element. This is a user-defined parameter.

3. Assign each member of the list in (2) above to one of the

storm element centers

a. If needed, carve a dividing line between storm centers to

ensure proper separation of storm elements

b. At the end of this process there will a set of lists with

each list containing the cells belonging to a single

storm element. 

4. Characterize each storm element by examining the list of cells

that constitutes it. This will create an object with the

following properties: 

a. Geographic characteristics such as areal extent, location

of centroid, size, etc.

b. Average value of the composite reflectivity

c. Other meteorological characteristics of interest, such as

rainfall amount/intensity, winds, vertical motion
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5. Optionally, examine each storm element to determine if there 

are embedded sub-storm elements within it using the same 

process as described above. 

  

6. Store the storm objects in convenient format.  It is possible to 

use the GeoJSON import/export utility in Enthought 

Canopy Python to capture/store each of the storm elements 

identified in a compact database, including its geographic 

coordinates and any desired attributes.  The result is 

creation of a small number of “intelligent” objects 

representing the storm elements at a particular time, instead 

of a mass of raster data.   

 

The user-defined parameters are essential as they provide great 

flexibility.  The SOEM can be applied to widely varying scales 

(i.e. nationwide versus regional scale), detection levels, and 

storm complexity.  The overall algorithm and the user-defined 

parameters accommodate various ambiguous situations, such as 

those illustrated below: 

 

 
 

Figure 3.  Two common situations that introduce ambiguity in 

storm definition: (a) two distinct storms incorrectly joined 

together as one (b) storm sub-elements embedded within storm 

elements (from Han, L., et. al., 2009). 

 

3. RESULTS 

3.1 Simple test case for illustration 

For clarity and brevity, the model functionality is initially 

illustrated by a simple 7 by 9 cell ‘study area’, shown below.  

This case was designed to show two clearly defined areas of 

activity (middle of column 2 and middle of row 3), as well as one 

marginal area (middle-right of row 7).   

 

 
 

Figure 4.  Simple test case – visualized.  Color range from green 

(low values) to red (high values) 

 

 

 
 

Figure 5.  Simple test case – represented as raster input data 

 

 

3.2 Results for simple test case 

Below are shown several visualized results.  In Figure 6, the user 

assigned parameter was set to indicate a low threshold for 

inclusion in a storm element.  The total area assigned is large, 

and the whole active area accumulated to one storm element. 

 
Figure 6.  Simple test case – low threshold for inclusion in storm 

element 

 

In Figure 7, the user assigned parameter was set to indicate a 

moderately high threshold for inclusion in a storm element.  The 

total area assigned is fairly large, and the area is well segmented 

among the three (expected) storm elements. 

 
Figure 7.  Simple test case – moderately high threshold for 

inclusion in storm element 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W2, 2017 
2nd International Symposium on Spatiotemporal Computing 2017, 7–9 August, Cambridge, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W2-87-2017 | © Authors 2017. CC BY 4.0 License.

 
89



 

In Figure 8, another user-assigned parameter was set to indicate a 

high threshold for a cell to serve as the center/origin of a storm 

element.  In this case, the marginal area (middle-right of row 7) 

does not identify as a separate storm element, and the cells are 

absorbed into another storm element. 

 

 

 
 

Figure 8.  Simple test case –high threshold for being a storm 

element center 

 

 

3.3 Results for real data 

The Storm Object Extraction Model was run for the actual High 

Resolution Rapid Refresh Data set of June 2, 2016 that is shown 

in Figure 1.  The data set has 1362 rows by 2264 columns, for a 

total of 3,083,568 cells.  It represents about 1/8 of the total area 

of the continental United States at a 3km x 3km resolution.  The 

seven storm elements identified are shown in Figure 9 (compare 

with the raw data of Figure 1).   

 

 
 

Figure 9.  June 2, 2016 actual HRRR data   

 

 

The model run was completed in approximately 2.4 seconds on a 

Dell Optiplex 3020 with a Core i5 processor.  As the algorithm 

execute time increases at O(n ln n) it is possible to extract storm 

elements on a continental scale much faster than the refresh rate 

of the HRRR data (every fifteen minutes), even on a very 

mediocre computer. 

 

3.4 Case study: Central New York flash floods of July 1, 

2017 

In Central New York on July 1, 2017 there was a wave of severe 

storms resulting in flash flooding serious enough to warrant 

national news coverage, 

https://www.washingtonpost.com/video/national/heavy-rain-

causes-flash-flooding-in-central-new-

york/2017/07/03/58388e7c-600c-11e7-80a2-

8c226031ac3f_video.html 

 

In order to study this event it is useful to identify, characterize, 

and track the storm elements that passed through Central New 

York causing very heavy precipitation.   The SOEM model was 

applied to the composite reflectivity data from HRRR from 10Z 

and 11Z (Z refers to Zulu or UTC – Universal Time Coordinated 

or GMT – Greenwich Mean Time).  The raw HRRR data is 

shown in Figures 10 and 11. 

 

 
 

Figure 10.  Composite reflectivity. 10Z July 1, 2017 showing 

severe weather approaching Central New York. 

 

 
 

Figure 11.  Composite reflectivity. 11Z July 1, 2017 showing 

severe weather affecting Central New York. 

 

The SOEM model was run on the HRRR data employing the 

user-defined parameters of 33 dBZ for the minimum value for 

membership in a storm element and 50 dBZ for the minimum 

value to establish a storm center.  Figures 12 and 13 show the 

individual storm elements identified by the SOEM model. 
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Figure 12.  Storm elements for 10Z July 1, 2017 (compare with 

Figure 10).   

 

 
 

Figure 13.  Storm elements for 11Z July 1, 2017 (compare with 

Figure 11).  

 

At 10Z there are a total of 18 storm elements, and at 11Z there 

are a total of 12 storm elements.  Although the overall storm 

system overall greatly increased in severity, some individual 

storm elements died out or were absorbed between 10Z and 11Z.  

The conversion of the masses of HRRR composite reflectivity 

data to a handful of clearly defined and characterized storm 

elements enables meteorological scientists and forecasters to 

more easily study the evolution of these systems.   

 

 

4. CONCLUSIONS AND SIGNIFICANCE 

4.1 Efficient and effective application program 

The algorithm that drives the Storm Object Extraction Model 

(SOEM) is efficient and clear.  It can also be easily modified to 

suit the needs of other scientists and applications such as those 

described at the end of the introduction (i.e. spatial ecology, 

human geography, topography). 

 

4.2 Need to capture HRRR data in a form amenable to 

convenient analysis 

The National Oceanic and Atmospheric Administration of the 

U.S. Department of Commerce reports that 20 Terabytes of 

weather-related data are created EVERY DAY.  In fact, much of 

this information is not even archived, due to storage and 

processing constraints.  The Storm Object Extraction Model will 

allow interested scientists to capture the essence of this data (in 

the form of objects representing the important storm elements 

that occur.  These weather objects can then very conveniently be 

used for study and analysis of ‘exciting’ weather without the 

need to search and abstract from multiple petabytes of data. 

 

4.3 Enhances downstream analysis and processing of 

spatiotemporal data 

One of the goals of SOEM is to reduce the size of, and add 

meaning to, large raster data sets.  As stated earlier, people are 

able to cope very effectively with the real world because our 

brains process and perceive objects (cars, people, fields, 

buildings, etc).  The SOEM puts this power in the hands of 

environmental scientists with respect to their masses of digital 

data about the world.  The SOEM also helps identify very 

important, small, short-lived phenomena such as intense 

convective cells in the atmosphere (thunderstorms).  These can 

develop very rapidly into high winds, tornados, flash flood 

precipitation, hail, and other very dangerous weather.  By 

identifying the fairly small areas occupied by these storms (10-

30 miles in diameter) one can proceed immediately to very short 

time step analyses in an effort to forecast their development on a 

minute-by-minute and mile-by-mile basis using such tools as 

cellular automata modelling.  Waiting for model refresh of the 

overarching continental models is likely to miss completely the 

growth and dissipation of highly local events, or at least greatly 

reduce the potential warning time for people in the area. 

 

4.4 Many other spatiotemporal / environmental data sets 

can be treated in the same way 

There are other spatiotemporal data sets that could benefit from 

similar object extraction models, which can be based on the 

successful SOEM algorithm.  In fact, any massive raster data set 

with continuously varying values that also change (relatively) 

rapidly over time can be subject to object extraction.  It is 

especially useful/important for data that contain objects with 

fuzzy boundaries.  Some examples include remotely sensed data 

of: 

drought areas 

extent of insect or plant disease outbreaks 

progress of urbanization 

flood extent 

wildfire spread 

changes in volcano topography indicating impending eruption 

 

The SOEM application is very clear and generic.  The user-

defined parameters are not specifically tied to meteorological 

analysis, but are used only to set the spatial and value parameters 

needed for the extraction.  The same parameters (how big does 

the cell value have to be for inclusion in an object, how far apart 

object centers have to be, etc) will be the same for any 

application. 
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