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Abstract

The Ftype ATP synthase is a rotary nanomotor centragtiolar energy metabolism in almost all

living organisms.In bacteria, the enzyme also plays a role in nutrient uptake and pH regulation
underlining its importanceAll ATP synthases can be inhibited by ADP, wheredsainteria the

enzyme is als@utoinhibied byi t s U Theuirtibitioni involves a drastic conformational

change ofie Gt e r mi na |l domai n o thatblocks catélyticsturiowem This ( UCT I
regulation by U is believed to play an import
development in the field of antibiotics has valdated ATP synthase as a drug target against
pathogenic bacteria. Thus, there is a renewed interest inrsiydyit he r ol e of t he
regulation of the enzyme and exploiting it to develop antimicrobials that can kil pathogenic
bacteria. The present work describes advances in our understanding of the regulatory interactions

of U C E.xoli ATP synthaseln the first approat, we used an optical binding assay to
understand t he t r anastiveandinhisitoryocohforrth@m. Dsing different e n i t s
igands werevealedhe r el ationship bet we elmth@ddeddondinavd i bi t i ¢
approach, the terminal five amino acid¢ 6fTD were deleted to observe the effectsornvoand

in vitro functions of ATP synthase. The results obtained from these studies advance our

understanding of inhibition in bacteria and also provide a nowargetwithin bacterial ATP

synthase to obtain antibacterial drugs.
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Chapter One

General Introduction



1.1 Introduction

Adenosine triphosphate (ATP) is the universal currency of energy in living
organisms. As a result, the enzyme that metabolizes AJdP,ATP synthase, assumes a
very important role in celular metabolism. Almost all of celular ATP is generated from
Adenosine diphosphate (ADP) and inorganic phosphate (Pi) by ATP synthase via oxidative
or photophosphorylation. Both phosphorylation proesssvolve the transfer of electrons
from a high energy molecule to a low energy molecule through redox reactions. The
transfer of electrons is coupled with pumping of protons across apsemeable
me mbr ane whi ch results i nmeanbp ame o np ogreand ii &
collectively known as Proton Motive Force (PMF). The ATP synthase utilizes this PMF to
generate ATP from ADP and Pi.

The Ftype ATP synthase @Fi1) is a rotary nanomotor that is functionally
conserved to a large extent in eukaegotand eubacterifl, 2]. It is located in the plasma
membrane in eubacteria, inner mitochondrial membrane in eukaryotes and within the
thylakoid membranes in plant chloroplasts. StructurallgFiis made up of a membrane
embedded &domain (Oligomycin sasitive) that is involved in proton translocation, and
an external Fdomain (Factor 1) that contains the catalytic sites (Fig. 1.1). Catalysis by the
F1domain is coupled with proton transport ky. Buring respiratory growth, the products
ofglycolysis md Krebo6s cycle feed into the electrc
same vicinity as the ATP synthase. The ETC transports the electrons to the terminal
electron acceptor, oxygen, coupled with pumping of a large number of protons across the
membrae. This proton imbalance provides a high amount of potential energy that is

converted into chemical energy by the coupled processes of proton transpastaby F

2



ATP synthesis by £When the PMF drops below the level required to drive ATP synthesis,
the exzyme works in reverse, thereby hydrolyzing ATP and pumping protons in the
opposite direction[3, 4]. Bacteria use this process for uptake of nutrigbisas well as to
maintain cytosolc pH6, 7]. Mitochondria inhibit this process by a separate inhibjito
protein IR [8, 9] as otherwise the enzyme would burn through ATP stockss I§pecific
for mitochondrial enzyme and does not inhibit the bacterial enf®ell]despite strong
structural and functional similarity between mitochondrial and bactenafmes(1, 2].

My thesis work has primarily focused @& coli ATP synthase. For the sake of
simplicity, | wil talk about theE. coli ATP synthase from here on. Wherever enzymes

from other organisms wil be described, the name of the source organism wil be provided.



Figure 1.1




Figure 1.1. The bacterial ATP synthase

E. coli ATP synthase is shown withollomain embedded in the cel membrane and a
peripheral Edomain. All Fo subunits ¢o(green),a(red),b,( gr ey ) ) and U0 subu
from F1(shown in ribbons) are obtained by homolaggdeling [13]. The surfaceendered
Fidomain (three U (green), three b (blue),
is from determined structuresi whreDB |D (3FODABA
Stepwise rotation of thec-ring rotates transports protons in the direction shoWhen

PMF is high, the rotor turns in the red direction leading to ATP synthesis. When PMF is

low, the rotor turns in the blue direction, leading to ATP hydrelisigen proton pumping.

This figure is modified from ref. 109.



1.2 Structure of b F1 ATP Synthase

FoF1 ATP synthase is a multisubunit complex that is made of up 20 or more
polypeptide chains (Fig. 1.1). Structurally, the enzyme can be classified into two domains:
(1) A membraneembedded & domain and2) An external k domain. The &doman is
made up of subunita, dimer b, and a circular ring made up af subunits with the
stoichiometry of éhecs1s. The Rdomai n  consi sbgosnl[e4f 15]0wdsalini t s
Ubbso1tih U aubacs-1sis the shared stoichiometry observed iype ATP synthases and the
architecture is similar across different kingdoms. The bacterial ATP synthase is the
simplest of all the ATP synthases. The mitochondrial ATP synthase contains several extra
subunits andunction of some of these subunits are known. Sulzlniakes contacts with
subunits of the peripheral stalk such as subbpit/Fs and OSCP and is shown to be
essential for enzyme function in yeast mitochondrial ATP syntha6¢ The subunith
(yeast)or Fs (mammal) is a water soluble protein that is shown to be important for assembly
and/or catalysis in yeast ATP synthd4&]. The subunitf plays an important role in stable
assembly of subunitsa and ¢ in mitochondrial ATP synthas¢18]. The differences in
subunit stoichiometry have been described bg®@fas well as listed in Table 1.1.

The Fodomain:Based on function as a rotary motor, the subunits of ATP synthase
can be classified into a rotor complex and a stator complex. Irotlenfain, thec subunit
(~8 kDa) is the major part of the rotor complex. In bacterial enzymes, 10dsutiunits
are arranged in a ring. In mitochondrial enzgmtne ring is formed of &r 10 ¢ subunits.
Eachcsubunit i s maheliees ihgi gaw the entveomentbrane with a

hydrophilic loop acting as a connector tp Fhis loop forms contacts



Table 1.1

Mitochondria Chloroplast Bacteria Stoichiometry
) U ) 3

b b b 3

2 2 2 1
OSCP a u 1

u U U 1

U - - 1

a, subunit 6 a, subunt 1V a 1

b, subunit 4 b and béo, b lor2
c, subunit 9 C, subunit 1l c 8 to 15
d - - 1

e - - lor2

f - - 1

g - - 1
horFs - - 1

AG6L, subunit 8 - - 1

IF1 - - 1

Fs, Factor B - - 1




Table 1.1. Subunit composition of ATP synthas¢?, 18] Subunits of ATP synthases

from mitochondri a, chloropl ast and bacteri
common in all/l three types. I n mitochondria
(Qligomycin Sensttivity-Conferral Protein) and thdro mol og of bacteri al (

mitochondrial enzyme contains one b subunit whereas the bacterial and chloroplast
enzymes contain two. The ¢ subunit stoichiometry ranges from eight to ten subunits in
mitochondria, to fiteen in bacteria. Two caopi®f the subunit e has been found to be

present in rat mitochondria.



with subunit sidonanawhdh fdim thef restt o the rdfor complgb].

Adjacent to thec-ring is the hydrophobic and the largest subuofifo, subunit a (~30 kDa)

[20]. It is also found to be in contact with the dinter[21-23]. Subunit a andb, form the
fistator o c odopdineSubunbai st hnea de  hg@iceso that tfaversee the U
membrane, accessing cytoplasmic and periplasmic sp24&6]. The Ntermhus is in

the periplasm while the -@rminus is in the cytoplasm. Mutagenic studies have implicated

both ¢ and a subunits to be involved in proton translocation (discusse@#}). The

mechanism of proton transport is discussed below.

Proton translocation Cox et al. gave the first model of proton transport viathat

involved rotation ofa and c subunits relative to each oth¢28]. According to this model,

the protons would travel tahsubanit Polar teddaes A pr ot
from one or -heloesr of them Suburit foem tHg aqueous hafiannels and

provide access to the center of the membrane from the cytoplasmic and periplasmic spaces
[29, 30] Mutagenic studies first showed that Arg210 vessential for proton transport

[31], with later studies showing Glu219 and His2f@2] are also important for proton
transport[33-35]and are part of wattk c c e ssi bl e proton RBHalf ch
The amino acids Arg210 and Glu219 reside onfthe u r-hellx ant) His245 resides on

t he fhelt of Bubutital[31, 34] Onthecsubuni t , Asp61, r-esidin
helix, is crucial for proton transpofB86, 37] The structural arrangement of theandc

subunits brings these amino acid<lbse proximity at different stages of proton transport.
Different groups have presented similar models to explain the transport of protons through

the assembly o& and c subunits [24, 3842] (Fig. 1.2). It can be summarized in the

following way: during ATP synthesis, an electrochemical proton gradient is generated by



the electron transport chain, with higher concentration of protons in the periplasmic space.
At any given time, twa subunits interface with suburit. ThecAs p 6 1 ihelicestdie U
both hesec subunits have a pKa of 7.1 and are deprotonategieas, the@Arg210 has a
higher pKa that ensures protonation from the periplasmic gd&cel3]. The aArg210
interacts with the deprotonatedsp61 leading to protonation of theAsp61 with protons
from the periplasmic space. The protonation leads to an electrostatic rotationc-irthe
by onec subunit as theaArg210 wil now be strongly attracted to the remaining
deprotonatedcAsp61. This ensures a unidirectional rotation lad ¢-ring vs ab,. The
movement facilitates the protonatedsubunit to access the second -bhlinnel with
aGlul96 near the end. The pKa of the protonat@dp61 gets lowered on exposure to the
hydrophilic cytoplasmic halthannel, leading to the releasepooton to the cytoplasm via
the halfchannel. This deprotonatemsp61 starts its interaction witwArg210 to continue
the cycle.

Recently, Meierds group proposed a micr
explain proton transport when it is drively ATP hydrolysis[175]. X-ray crystal structures
of the c-ring in low and high pH conditions and in presence of DCCD were presented to
support the model. The model proposes that whercaheoxylic group of thec subunit
faces a hydrophobic dehydratecenvironment it assumes a protdocked state and
coordinates the proton tightlyThis stateis thermodynamically stabiized by the lipid
membraneenvironment During ATP synthesis, when tl@arboxylic group of & subunit
enters the interface with subura, it encounters a localy hydrated environmenthich
promotes poton transport to the cytoplasmic side via the aqueousiheiinel of subunit

a. A proton can enter the second t@iannel from the periplasmic side and can reprotonate

10



the now deprotaated c subunit. The reprotonated subunit can now adopt the proton
locked state and can interface with the hydrophobic lipid membrane to carry on the cycle.
The stochastic alternating of tteering between these environmenis what drives the
rotation. It is the proton gradientacrosshe membrane which determines the direction of
the rotation of thes-ring.

Subunit b (~17 kDa) forms the peripheral, stator stalkk connecting the membrane
embedded &wi t h s u b u[#4i. Connactiom 6f diffe, wi t h O is i mport
functional assembly of the enzynjd5, 46]as wel as for stabiizing the enzyme against
the torque generated by the rotatiog i n g, 9 afdd. Suggestiand bave Heen
made regarding the role of the peripheral stalkraslastic structure that can deform with
stepwise movement of protons througb [#8]. On the other hand, using spin label studies
it has been proposed that subupican affect the conformation of catalytic sites and play

a role in coupling of the enzymgt9].

11



Figure 1.2
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Figure 1.2. Assembly of the a and c¢ subunits for proton transporf24].

Ten ¢ subunits are shown to form a ring spanning the membrane. Asp61 residues are
located at the center of tleesubunit. Thea subunit forms an interface with two subunits

of the c-ring. The two halichannels are indicated with dotted lines along with important
residues that form the channels. The-bhiinnel with access to the periplasmic space is
contained within the subunit whereas the hatthannel with access to cytoplasm is shown

at the interface o& and c subunit. Movement of protons is from the periplasm to the
cytoplasm during net ATP synthesighis figure has been used with permission from

Springer International Pukihing AG, license # 3544831260545.
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The R domain: The external F domain contains the catalytic sites and is
responsible for catalysis in ATP synthesis or hydrolysis direction when coupled avith F
In bacterial ATP synthase, it can be dissociated ftben Fo domain in vitro and can

function as an ATP hydrolase (ATPase) onits ¢w@j.

Theb Uhexmthe Rdomai n, three U (~55 kbDa)
Ssubunits are arranged I|like alternating fdse
diameer of 100A[51,52] This hexamer iIs a part of the

subunits have high amount of sequence homology and have likely originated by gene
duplication [53, 54} Hence, both the U and b setunits
are three distinct domaingl) The Nt er mi nus forms a domain th
barrel. The six Nt er mi nal -badasnrgeract anf form a 24t r a nizheetl D
ficrowno at tbhehetxapneof tthrae Ws thofbsh2) to p
There are a total of six nucleotide binding sites in the central r¢g18], one on each
subunit. These binding sites are | ocated a
a n-h & | -sheet fsandwich motif, which is similar to manycleatidebinding proteins.

Only the sites |l ocated predominantly on b
whereas the sites on U subunits dcatalyhiot exc
sites), (3) The bottom region is made up the Gterminal domain formed by a bundle of

si x or-hekesviethe @der mi nal domain of b, an acidi
DELSEED moti f moves with the 2 subunit whe
[59]. This DELSEED motif is thoughtto play an important role in coupling between

rotation of the 9 subunit and catalysis.

14



The o Atuhb centerofthef/domain is a 90 j l ong o

that connects theiflomain to the & The Nand &@ er mi na l helices of tI
subunit reside in part-bwhéekamernt.heThbentowbr
contact with thec-ring and the Nt er mi n a | domain of the U sub
major rotor compong within the kR domain. Aful 360r ot ati on by 2 invol\

of 3 ATP molecules, so hydrolysis of 1 ATP molecule involves®t20t at i[@0h of o
Rotation of the 0 subunit within th8f hexan
hexamer at hr ee specific si t e s[6l]l Bhdse interattona £o t he i
ordinate conformational changes in the cate
changes are important for binding of substrates, catalysis and release of praducts i

agreement with the Abinding [B2ange mechani s

The U and SUbswibtunilt si:s part of the sta
peripheral stalk connectingofwith F1. The U subunit i siwitke qui r ed
Fo[63]. Its homdog within the mitochondrial ATP synthase is denoted as O%8JPThe
U/ OSCP subunit plays a structur al role and
of the Fo domain with the fFdomain.

TheU subunit (~15 kbDa) cont erg wa itstNhe b ase
terminal domain (UNTD). The UNTD is a b ba
for functional assembly of the enzyme. TheteBminal domain Y C T D) is for med
U helices that can transiton between different conformations and play a major role in

regulation of bacterial ATP syntha&2] (more details are in the later part of introduction).
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1.3 Binding-change Mechanism

Hi storicall vy, Mi t ¢ h e luplibgs propoked that glectrorf trarsgog mi o s |
through the electron transport chain could create a proton motive force and it could drive
synthesis of ATP[64, 65] As a resul, many theories were proposed to explain the
relationship between proton movement aktP synthesis. The most widely accepted
model was originally proposed by Boyer and was based on oxygen exchange reactions;
this later becamehdbkngwn ma65hTEdn teassiold ofprdtons g
across the membrane lead to conformational changes at the catalytic sikgpenATP
synthase. These conformational changes cause changes in affinity for reactants and
utimately lead to the formation and release of produtite binding change mechanism
encompasses three main postulat@s:during ATP synthesis, energy from PMF is used

for binding of ADP and Pito and release of tightly bound ATP from the catalytic sites and
formation of ATP involves a very small free energjyange.(2) Catalysis is carried out by
multiple catalytic sites that are strongly cooperative and function in a sequential cycle. The
binding of ADP and Pi to one catalytic site is necessary for release of ATP from the
adjacent catalytic site and this @nsistent for all three catalytic sit¢62]. (3) The
sequential, cyclical conformational changes in catalytic sites that are necessary for binding
and release of reactants are coordinated by rotation of one or more subunits relative to these
sites [67]. Experimental data from various groups supported the first two postulates in
intact enzyme [68, 69] and isolated F[70-75] of different organisms. Data from other
groups supporting these postulates have been discussed ifG#tdising crosdinking

sudi es, Duncan et al. were able to demonstr

within the central cavitf76]. Further proof was provided through microscopic studies that
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involved direct visualization of rotation of an actin flament attachesl t he [&/]. subuni
It was also proposed that proton transport byinkolves rotation of subunits[28, 78]
which also proved to be true as studies have shown rotation ofritige [79-81].

The bindingchange mechanism entails cooperatvity betwestalytic sites that
are alternating between three different conformational states. These states vary in terms of
their affinity, occupancy and/or the type of nucleotide interacting with tfglh The
asymmetry of the 2 s ubnixadoptthe sasne coafmmatiom at t no
any given ti me. For exampl e, t he &Eocalif or mat
and mitochondrial F has been observed in-tdy crystal structures[12, 51] The
conformational differences causehe cat al yti c sites to cycle
Afopend states with each of the three sites
time (Fig. 1.3). The tight site has tightly bound nucleotide and is catalytically active
whereas the loosend open sites are catalytically inactive and contain loosely bound
nucleotide and no nucleotide, respectively. To describe the presence/absence of ATP or
ADP on specific b subunitSATPt hbeoyu nbgADRt | lydn e N
bound, loos ) & (emipty,bopen) (Fig 1.3). A recent-pdy crystal structure with bovine
heart mtochondrial FATPase showed that ipandrhd®e AR ound

bound and are loose and tight sites respectij@3y.
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Figure 1.3

ADP+Pi

energy

ADP+Pi

ADP+Di

ADP+Pi
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Figure 1.3. The binding change mechanism of ATP synthag@6]. The three catalytic

sites of ATP synthase |l ocated mainly on thi
letters T, L and O denote ftight o, offthd ooseo
catalytic sites. Subunit 2 Is shown in ye
subunits. In the left panel, ATP and ADP + Pi occupy the T and L sites respectively. The
empty O site is shown to bind ro@atBsP120andP i . [ n
induces changes in the conformational states. As a result, the L site now binds ADP + Pi
tightly and becomes T site, the O site now binds ADP + Piloosely and becomes L site, and

the T site releases ATP and becomes empty or O site. In step 2, ATPMisdf
spontaneously from ADP + Pi bound at the T site. The empty O site how prepares to bind

ADP and Pi. This sequence is repeated on all three sites with eadth ®20at i on of t
subunit. This figure has been used with permission from ProceedingseoN#tional

Academy of Sciences of the United States of America. The figure is subject to copyright

protection.
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1.4 Rotary Catalysis

The rotational model of ATP synthase involves rotation of the rotor complex to
transport protons as well as carry out lyai In the ls domain, thec-ring rotates relative
to subunitsa and dimerb,. Eachc subunit contains a conserved residue with a carboxyl
group @sp6lin E. coli) that gets protonated and transports the proton ta sidunit in a
stepwise rotating manner. The proton travels through thechalnels of the subunit.
The asymmetric 0 s ubcumgiand the tationnof tle-dng teads t  wi t
to rotation of o relative atocl@dvang. bTsabars
is accommodat ed in the <central cavity t hr o
subunits. These conformational changes are necessary for binding and dissociation of
reactants. This model has been used to explain thédpickkange mechanism and there
are biochemical and spectroscopic data that confrm this as seen below.

Most of the biochemical studies showing rotation involved cross linking subunits
within F1 or Fo or between Fand Fo. Duncan et af76] successfulys howed r ot ati or
within E.coliFtby c¢creating a disulfide bond betweel
i f the o9 subunit rotatéesnkwind oeswpebt bt avo
rotation. | f enzyme c atkiagl tgesrotasion woeldyichbit ttked r o't
enzyme. The crystal structure of bovinehgd shown that a homolog Bfcolio C8 7 wa s
positioned close to thé8°DELSEE86 [59, 83, 84]sequence of b subun
advantage of this positioning, b380D was m
formed between the cysteine residues on 2
whereas reduction restored the actvity. As annsxi@ of the experiment, the crelsked

enzyme was dissociated into individual subunits. Radiob el e d b subunits
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introduced at the nearosslinked positions and the enzyme was reassembled as shown
here[85]. Now, oxidatioAreduction of the etyme was carried out again under conditions

of catalysis and no catalysis. When oxidation was carried out under no enzymatic turnover,

2 was found to -fadol @behddtd.t Howevear, oxid
showed 9 boulabdedbo Fhemrtli® study, it was
9 rotated relative -nkingtsthdies ibbFsl u mkreidt sa rloattaet
proton translocaton and enzymatic turnover during ATP hydrol88] and ATP
synthesis[87]. In both ¢udies, isolated Fs ubunit s with DbD380C mut a
Fir-depl eted membranes. Under oxidizing condi
linked with o. Toiossl irrekmead nbng ulh wmoi tnso nwer e r
tagged brDn3) &uhudits (byp dissociatiereassembly [85]. When subjected to
reducing condi ta o a-ink stteo intact eeneyme e regdined coupled
membrane activity. In the first stud96], when the enzyme was reduced, exposed to ATP
hydrolysis conditons ah t hen oxi di zed,| i ok wraas. Rdpeatibmd t o
the same events but with no rActmsslihkgddwitlo | ysi s
2. Il n t he [84,dhe enzymie veas exgbyed to ATP synthesis conditions with the

same experme nt a | setup. Again, ATPRI isnyknitnhgaess wist hc of
and preventing ATP s yndclossksii sk eldedwittoh I1dttTh
that o rotation was nec eFs. haddion indothsees,zy mat i
membranes were treated with DCCD (dicyclohexylcarbodiimide). DCCD is a covalent
modifier of Asp61 ofc subunit and treatment ofofwith DCCD blocks proton transport

[88]. When DCCD treated membranes were reduced and subjected to either ATP synthesis
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oo hydr ol ys irscdc aHindiigtsaoconsiderably reduced. This showed that

blocking proton transport byring in ol eads to bl ocking of o rot
Rotation of other subunits was also investigated by drdseg studies. Cross

linking U and 9 had no effect on hydrolysi:

[89]. Further, hydrolysis and synthesis activity was inhibited by didéag of U, o and

b, and fully -reskiomg@dwwbemempbued, indicatin

to[9® Subunit U was s hownt todncspsdidonatrafiect o f t h

ATPase activity of the enzymf©1]. Whereas rotation of the-ring was demonstrated via

o-Uc[92] and c-b, crosslinking [93]. The crosdinking ofc-r i ng with rotor su

U did not affect ATP hydrolysis, cengwashesi s

a part of the rotor complex. With these s di e s , s uamndid appear tdJhe palt |, a,

of the stator c¢ompuling makewptheretersomgex. U and the
A more direct demonstration of rotation was achieved by attaching fluorophores to

one of the subunits and then observihg thovement via microscopy. The first study to

show rotat i onsedaffuorescem iattih flamentFto observe rotationiin F

ATPase of thermophilidBacillus PS377]. Isolated kdomain was immobilized in a tep

down orientation on a Kk-nitrilotriacetic acid (NiINTA)-coated coverslip via a Histag

added tothe M er mi nus of b subunits. On the 9 su

2S107C, which was then | abeled with biotin

um) that was flucescently labeled, was attached to the biotin maleimide via streptavidin

(Fig. 1.4A). This facilitated visual obser

microscope. Actin flaments were observed to be rotating in the presence of ATP, but not

in the absence of ATP or in the presence of ATP plus sodium azide (inhibitor of catalysis
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byR) . This I|inked rotation of o9 with net hy:q
top, the direction of 206s rotatfiven twas hebd
hexamer . A similar approach \Wwawmli[%]saadd f or
chioroplast E[95]and U r ot at i oBacilus PS3wHere natmowas dttached

t o[96]) The rotation of actin flaments took place in three °Efps. Observation of actin

flament rotation was a novel approach to prove subunit rotation in the enzyme; however
probl ems related to steric effects and vi
determination of the true rate of rotation and torqGaher problems included binding of

one flament to multiple complexes that were close to each other and colision between

closely spaced actin flaments.
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Figure 1.4

Actin filamen

Foon
R

Coverslip coated with Ni-NTA

A
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Figure 1.4. Direct observaiSchematc shbwsoweralat i on

experimental setup with isolatedi F7]. The subunit s are not to s
with Hisio tags at the Nerminus were immobilized on NNTA coated cover slip. Subunit

U was removed. An introduced cysteine nea

maleimide. Biotinylated fluorescent actin flament was bound to the ‘pi@leimide tag

via steptavidin. Rotation of actin flament was measured by epifiuore scahddodified

setup showsFi i mmobi |l i zed on a ceN-BTAshinding [94.hr ough
Biotinyl ated Gold bead of 40 nm was attache
and bovine serum albumin (BSA). Rotation was observed by laseffieldrknicroscopy.

Figures in panel A and B have been usdi permission from Nature Publishing Group.

License # 3544840407249 and 3544840587661.
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The experimental conditions wemodified later to attach a fluorescent bead
instead of actin flament and spacing d®mplexes at fixed distances such that the beads
would neither bind to more than one complex nor colide with other H8&fisHowever,
the size of the fluorescent beadsnstil large (diameter = 1 pm) and the rotational rate and
torque measured in this study was lower than what other groups have reported. Critical
advancement was made in the field with replacement of fluorescent beads with gold beads
of 40 nm diameter (& 1.4B)[97]. The smaller size reduced the viscous drag on rotation
of o9 arrdtéepse dR0O2 were observed with saturze
ATP concentration belovKw, the 120 steps were found to occur in substeps ¢f9@l
3(°. Thesesubsteps were later corrected to be 8Bl 40 rotation [99]. The 120rotation
of 29 was proposed to foll pdivestam3®s otsa@thieane : o b
At this posttion, the enzyme halts for a brief period of time which is calledcataytic
dwel | . The AT Prpdusng theycdtalytic| dyvell dokbweda iy Pifselease from
bop. Further 40r ot at i on r el eravbich scompleel thd 120 snt &t i on of
[100,101] These assays showed t hydrblysio Proving int i on
for ATP synthesis was tricky as ATP synthesis requires bethnd F assembled and
coupled. Immobilizing the entire enzyme on the cover slip has proven to be tough. A way
around this was wor ked o (102 10y] Maghetcawedrera g ma g
were then used to force the rotation of 9 i
Rotation of o9 in the synthesis direction s
the magnetic fi el d in the lsdrotysisrdmeetidn abd rate thabwas ot at

proportional to the concentration of ATP present. This was used to calculate the efficiency
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of ATP synthase in synthesizing ATP to be
for ATP hydrolysis and syntisis.

The rotational model serves best to explain the bindiragnge mechanism by
which ATP synthase functions. Taken together, the complete process follows this series of
events: Electron transport chain transports electrons coupled with pumping afsproto
across a senpermeable membrane, leading to the establshment of proton motive force.
The potential energy of the PMF is used by the enzyme to drive rotation ofrithg
relative to subunitsa andb, in Fo. Eachc subunit carries one proton that rartsported to
the partial channels of subu@itand then to the cytoplasm. Rotation of ¢heng is coupled
with rotation of 9 via direct physical con
within the hexameric cavity occurs coordinately with fcanr mat i o na | changes
subunits. These conformational changes change the affinities of the catalytic sites towards
substrates and products and faciitate binding/dissociation of reactants. Thus, the potential
energy of PMHs used to drive synthesbf ATP by the enzyme.

ATP synthase plays a pivotal role in energy metabolism. However, under certain
conditons the cell has to inhibit the enzyme. As is the case with many other enzymes, there
is more than one way to inhibit ATP synthase. Whi#gochondrial ATP synthase is
inhibited by a separate protein 1I[204], bacterial [105, 106]and chloroplast[107]
enzymes are inhibited by the native epsion subunit. In addition, ADP can inhibit the
enzyme[108land has been s ho wnbitidnd109 Sodpne azide isvi t h
another catalytic site inhibitof108] that can inhibit the enzyme by stabiizing the ADP
inhibited state. Other inhibitors include olgomycin, dicyclohexylcarbodiimide,

venturicidin, tentoxin, efrapeptin and flueaduminate [110]. In the folowing section, |
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wil talk about theepsilonsubunit, which is the natural inhibitor of bacterial and chloroplast
ATP synthases. The work described in this document has focused on understanding the

regulatory role EadliATPlsythaseé. subuni t in the
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1.5 The Epsilon subunit

The ATP synthase is ubiquitous in eubacteria and in many pathogenic species, it
plays a role that is not restricted to cellular energy metabolism. For example, the anaerobic
pathogenStreptococcus pneumoeiases the enzyme as an A@iRven proton pump to
maintain pH homeostasi§l11]. The pathogercauses pneumonia, meningitis and otitis
media and deaths of three million chidren per \@a2]. Studies showed that when the
expression of the enzyme was prevented by genetic disruption, it led to loss of viability in
the bacteria, indicating that the enzyme is esse[ti&B]. In Streptococcusutansthat
cause dental caries, ATP synthase agamctians as a proton pump and provides -acid
tolerance at pH values that otherwise would prove letf@dl Simiarly, Listeria
monocytogenesy foodborne, gram postive, facultative anaerobic bacteria that causes
deadly infection of the central nervous syst[114], requires ATP synthase for acid
tolerance as evidenced from the increased sensitivity of the bacteria to low pH following
DCCD treatment7]. In addition, ATP synthase appears to be important in gastrointestinal
gram negative pathogens lk8almomlla enterica[115], Helicobacter pylori[116] and
EnterohemorrhagicE. coli [117]. All these studies demonstrate a crucial role for ATP
synthase in bacterial pathogens. Recent FDA approval of a drug targeting the ATP synthase
of M. tuberculosishas showrthat the enzyme can be an atiractive tafy#8]. This has
generated a lot of interest in finding compounds and ways to inhibit the enzyme in order to
develop antimicrobials.

The U subunit i s t hdomam auad Iplys antinhibgowgddeu n i t [
in chloroplast and bacterial enzymes. Its inhibitory properties were first seen in chloroplast
enzyme [119]. Il n the bacterial ATP synt hbk.<d, U wa

[105, 120, 121] Its inhibitory role was confrmed irE. coli [122, 123]as well as
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thermophillic Bacillus PS3124]. I n contrast, the homolog of
inhibitory [174]. I n addition to regulating the enz
proper assembly of the bacterfdl22, 125, 126jpnd mitochondrial enzymgl127]. While
not required for assembly of the chloropl as
between proton transport and cataly§i?8, 129] In one study, bacterial enzyme that
contained U s ub u @-tetminalwdomaino showed tinbreasede untoipied
ATP hydrolysis and decreased proton pumping. This led to a proposal of an additional role
of U in en[&30]glywasc osuppel d inlgat ed t hat the primat
uncoupled ATP hydrolysis ambt to regulate the coupled activity.

With U playing such an important role i
bacteria but no known inhibitory role in mitochondria, it is only natural to search for ways
that allow targeting it in pathogens tthibit growth or viability. The goal would be to
either i Arediaed ishibition to eedudé the enzymatic activity or to decrease the
inhibition to interfere with the regulation of enzyme function. Any compound that either
i mproves oirnhriebdivtcoersy Udbbsi | ity may be of inte
amount of flexibility. The following sectic¢

E. coli ATP synthase in order to set up a proper background for the remaining chapters of

the thesis.
Structure of epsilonE. coli U subunit i s a 138 amino
approximately 15 kDa. It is |l ocated at the

cring. Thes ructure of isolated U subuni t[13lvas det
and later by Xray crystallography{132]( Fi g . 1.5). Both of these

is formed by two domains: an-Ner mi nal d o mai n-87) didNGebminal( r e s i d
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domain (residues 88 38) . The NTD ¢ ons iskeets eachfmade upoof ant i
fivetrbands, arranged in t wo-barra (Fig rl.5). Exceptd ma ki
for bl and b9 strands, a | Hparalelt tbh eah otlfer. st r an
Hydrophobic amino acids are arranged such
barrel. One of the two sheets contains a |
which plays an important role in binding w
The CTDi's formed by -helves cannedtad hya lapp31].€The codtact

surface between the helces is hydrophobic and involves five highly conserved alanine
residues that are arranged I|ike a fdzippero
helix i nt er act with Alall7 a-hetk Thd @TD2hdd been t he
observed to adopt two distinct conformations based on trypsin digestion studiek. with

coli Fras wel as intact #+1[133,134] I n t he pr es e n avasresidtantMg ADP
to trypsin but in presence of ATRithout Mg*, trypsin treatment showed extensive
cleaving. So the conformations depended on
of the enzyme allowing trypsin digestion e
exact details of those conformations rev@ot known. High resolution crystal structures of
E.coliFir eveal ed that the conformat i orhaides chang:
whereupon the U helices can stay in a coil
c onf or nupdr theosoond hélix can extend and insert in the central cavitheoflb

o

hexamer( t er med as exteyyddd conformati on, U
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Figure 1.5
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Figure 1.5. The structure ofE. coliU s u [j182). Panel (A) shows the-8imentional

structure oftheE. colil subuni t (PDB I D l1laqt). Ten b sh
barr el and are depicted i nhelgdsdodneascoilentdil gr een
close to the NTD and are depicted in yelow (loopl), orange (helxl and loop2) and red
(helx2). Pa e | (B) shows the arrangement of the ©
dimentional form.Figures in panel A and B have been usdtl permission fronElsevier

Limited. License #3544841066015.
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Interaction of epsilon with othersubunifehe locd i zat i on of U with
subunits was not clear from timitial crystal structure of mitochondrialif51]. In electron
microscopy studies ofiff 2 was found to form the centra
it [135]. Crosslinking studies involving cros$ i nki ng of U with other
regarding t H¥86, 133]c aTheyn a@lfsoU revealed that

contacts with subunits of bothoH138] and R [137] domains. In addition, information

regarding thege ci fi c amino acids 1involved i n when
the possible conformational change of the
function of the U subunit in bacterial anc

mechanismby which it regulated the enzyme was not yet clear. Hence, to understand the
function of U its interactions with other
were investigated.

UNTD i nt énitiah studigsonEscolir eveal ed ctthsat wilk hi ntt fee
subunit [139]. Later, it was shown that UKpbBnds tc
nM) [140. Ot her studies -liamke nghesht hUD& 2@BF b s o
[89Jand U43 to o b efldtle@rignally, 22@edtic studgl show2dBtitat a
mutation in the U subunit at residue 31 re

E. coli ATP synthase that was uncoupled due to Q42E substitution mstideuntt [142].

This suggested that there was sasubun.uncti o

Using crosd i nki ng studies, it was sitingofthe ® hat Ol
domain at mukiple positions[142]. These i nteract cong were o f 0
consistent with the location of [1B5i48] i nt ac:

The conformati on of O was similar to that
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structures[131, 132] In this conformationthe NTD and CTD were in cd@ proximity of
each other and woul d-bb & e péowvever, lotschked et alnd e r
showed direct i nt e 4inking tthroogh a watesolfble aartwhdintideb 'y ¢ r
that only crosdinks sites in very close proximity144]. This cosslinking would only be
possible if U exists in a conformation tha
UCTD int&hacstoansture of i s-dicastobsetoU s ho:
each othef131]. In addition, t h ehelidgs conta t the UNTD with a buri
910 A [132]. This region is closely packed, hydrophobic in nature and inaccessible to
solvent. Wh e n U was s-hiomwlh wictshounitp & sdopted the same
conformati on [145. Inotheestudesbd 1at & di nU t hehelcesop bet
was found t o I(76]taenrda cbt3 8 i[146f iefdBe8 As.wél,as with
U4 1[147]. Hence, the crossi nki ng of U to U and b gayv
conformational c h antemgationsi were hown bde dependent gnthé h e
type of nucleotide present, i ndi c@d47i ng an
Cingolani and Duncan resolved arXy crystal structure dE. coliF. at a resolution of 3.26
i that s ho we difetént iconformatiomahark peedidusly avaiable crystal and
solution structures(Fig. 1.6 and 1.7)12]. In this state,tt e -helites had undocked from
the coiled coil (compé@dcparcioiny or maei oimd iUn
hexamer.Thi s state was <call ed x}). mahs Goaformagiond e d 0 ¢
UCTD contacts five s ub uhdfsudace iamfl?]. Astskolvn and b
in Fig. 1.6, in the UCTD, the helixlo and |

t he Rossmanhhefolladstofb 2s.tr and of t he ONTD |

transitions bet ween the compact amstatee xt end
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the b strand is folded axstdte, thsstrgndagetsiolded UNTD.
into a loopl and bec o me sstaefelix established Comtdrts ( Fi g .
with b1, b3, U1, U2 subunits within the ce

i mportant f 0 K cosformation. |Thezantipagllecdied ecoil between helix2

and 2 is accompanied with hydrogen bonds a:
interaction. On the other hand, helix2 is

Post insertion, r ootsaittiioom ohfeld x2s dtimewgHty t
l eads to blocking of the interaction betwe:«

to have few if any specific bonds with other subunits but shows a large amount of buried

sur face area with b 3.
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Figure 1.6
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Figure 1. 6. Conf or mat i o B.adliATR dyatimagegl?d]. Then t he
panels show alternative conformations adopted by theeCr mi n a | domain of C
is the compact conformatiod) wher e -heltes (g dhd dieen) are in a coiled

col, closetothe N er mi nal d o ma i-strand 10 & tplded.tThe)CTDeconthinsb
helix1, l oop2 and helix2. O nx) ih \wheh theettiee 1 st
regions othe CTD that interact with other subunits are numbered. Region 1 contains loopl

whi ch, xstnattehe il formed by unfolding of ter
Region 2 contains IxbtbpBAc andhbii@cwhich ibscomdmon ge r i
Uhelices punctuated by xThs figameohastbeen esgpitto n  ( Re

permission from Nature Publishing Group. License # 3544830888375.

38



Figure 1.7
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Figure 1.7.E.coliFFkdomai n with the UCTD iFnX-rayerystalnde d c

structure is shown in a similar manner[d8]( PDB | D 3 OAA) . The thr e
depicted in red, green and blue and the t
visualization. Theo (yellow) and the UCTD (magent a)

cavity. The UNTD (cyan) is near the foot 0

by space filing atoms.
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Functional role ofepsilonl n bacteri al ATP symkelfoase, U
ensuring proper assembly and functfi22]. Since ATP synthase is at the center of energy
met abolism, It is safe to say t Hbetprimdr§s r ol e
role of UCTD was found t dyHaseral[120, 124 H4Bb i t i ng
and chloroplast enzymefl07]. The fir st documentation of U6
the chloroplast Fwhere it was identified as a cold stable, hydrophobic inhibitor specific
for chloroplast and having no effect on mitochondrial1A.9]. Later on, Smith et aj120]
were able to parmliFaand show phibitianfof ATPChydfolysts iy
for the first time. The same group further characterifeccoliUds i nhi bi tory pr
showed t hat U ¢ a nby diution §L05s 121 It Hach teeonde evidern tmat F
U can strongly (~90 %) i nhi bii Treatmenh svith /@ P a s e
detergent lauryldimethylamine oxide (LDAQncreased ATPase activityreveahg that
ATP hydrolysis of isolated Fwas inhibited by about-6 f o | {49 .bSjudie§ using
reagents ke LDAO, ethylene glycol and octyl glucoside, thatiatsy the inhibition,
shed |light on t he me[td8-a5h).iLOAD wasffound ndigatiseé t i o n
di ssociat iiglBl]lbaift & hfer oUn skibuni tiATRasesn absbntee t 0 |
of [10Gb]. Crossl i nki ng of U -saluble] zebo lebgih carbodinade eves
reduced in the presence of Dboth ethylene g
physically wi t h the b subunits to inhibit
aleviaed by heat (in chloroplast enzymg)05, 119] alcohol (in chloroplast enzymf 52]
and in bacterig153]) and trypsin treatmerfl34, 151]. The exact mechanisms by which
of many of the above mentioned factors aleviate the inhibition are not completely

under stood. The data suggested that ethylen
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with b without dissociation of U, alcohol C
cleaved the @erminal domain. Thus, reduction of inhibition thus appedoediork by
interfering with the nor mal interactions o

inhibitory role of U in bacteria and chlor ¢

Since U contains two distinct domai ns,

predominant in exertn t he i nhibitory effect. To inve
di fferent l engt hs and the effects of thes
function. Masamitsu Futaids gr el3§ inEsdolo wed t |

U pr e v éiton eofdATPage ladtivity{123]. This result was the first indication that the
C-terminal domain is primarily involved in inhibition and dispensable for growth. In
another study, di fferent resi du@ih. Tod UCTD
membraneATPase activity of the enzyme with the
wid-t y p e . This study again gave strong evide
activity. With the high resolution crystal structure revealing the conformational ehaag

we | | as extensive contacts between UCTD anc
inhibited the enzyme by jamming the gears of the rotor conjdlgk The interactions of
helix1, helix2, | 00 p 1were suligested tobe faciitfting e TD w
inhibition of oU rotation within the cavit
competitive with ATP except in the caseRscillus PS3w h e r physicélly binds ATP

and compete§l56]. Further evidence thatte CTD is dispensable for
E.coimut ants that lack the entire UCTI3 yet s

130]. Further, widtype anaerobic organisms like those from Higdobacteriumgenera
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contain ATP sydehasds ofvhb e e[hs5H.Unaiede badtere | i ¢ e s
ATP synthase primarily acts as an ATRaseen proton pump.

There were doubts regardin[4s BHasmosbl e in
of the studies showed U inhibition od ATP |

As measurement of ATP synthesis required working with inta¢t R membranes and

removal of U | edromt Fe[12@)i tswasotaughatd dcument inbifitio rF

by U on membranes. Moreover, the inhibitio
markedly lower than that of isolatedi.F Thi s | ed ma nighbitibrowab el i e v e
imited to ATP hydrolysis only in isolatedilend inhibition wasact ual l'y r-el i evec

inhibited R bound to 5 on the membrand158, 159]. As aresuit many groups concluded
that Ué6s inhibition was limited to ATP hyd
This conclusion however proved to be untrue. Past studies had #tawprotease

digestion of isolated /¢ | e av e d t [h5d], which ded to amiricrease in enzymatic

activity [160]. When intactE. coli FoF1 within cell membrane was treated with trypsin, it

also increased the hydrolytic activity ataratesimilao t hat obt ai 83 with
Thi s indicated t hat U may i offih tod» Moreover,n z y ma t
treat ment with LDAO had shown that U was a
by 3-fold [149]. Taken together, these resutse r ¢ supportive of Ués i
i ntact ATP synt hase. I't also opened up the
the ATP synthesis direction. The studies t
synthesis by intackE. coli [161] and Bacillus PS3124,162c onfir med U6s i nhi

in ATP synthesis.
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Many studies had shown t haddondin fothefhecess
domain inE. coliandBacillus PS3125, 126] though one study demonstrated ttaketion
of first 15 residues stil results in proper assembly and a functional en@d&®. In
addition, most of the  biisdiprgoveée dedyo@yf arheU
The facs that the enzyme auld ro t as s e mb 182, 123, 148 andthat EUcoli
mutantswith deletion of residues 7838 ( UNTD contains residues
is deleted) fadtd to grow aerobically proved thathe NTD was necessary for assembly and
indispensable for growth. The mutants with deletions -d6le si due s in UNTD
defective coupling betweenorand R, f ur t her demonstrating a r
assembly[163]. Alaninescanning mutagenesis Bfcolil r e s i-3B(naisly the O
terminal domain) resutted in mutants that had either incre@sEelase inhibition and
decreased DCCD sensitivity or increased ATPase actvity and lower membrane bound F
[164]. The results hinted at the role of UNTL
of Foand k. Mutations that probably interfered with theading led to lower inhibition of
the enzyme and dissociaton ofi Fom the membrane, which again pointed at its
importance for assembly of the enzyme.

Apart from inhibition, U has been found
proton pumping E. colimut ant s |l acking the entire CTD o
kDa Flavodoxin on NTD showed higher ATP hydrolysis that was uncoupled from proton
pumping [130]. Mo r e88stoprmutants Wvithout the NTD fusion showed decreased
ATPasedriven protonpumping compared to wiltype membranes With partial deletion

of UCTD, mut ant s showed reduced proton pumj



In E. col U is required for conformational c han
coupling ofproton pumping with catalysi§l65, 1686.

The U subunit plays an important o ole il
has markedly | ower ATP [B§ 129hEk In ssolatedalk es i f

ATPase when o isdioecéedonhoofotrAdPe symthbéasi s,

respectable ATP synthesefficiency [103]. I n the absence of U, th
a production of ~0.5 ATPs per 1 rotation o
produced (an efficiency of 77 %) . The exac:
speculations range from stabli ng part of o2, which experien

facilitating a switch to ATP synthesis mode by undergoing structural changes.
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Ef fects of | i gands/ chAsmmentionddseariernthefCd s ¢ o |
terminal d o ma i ferentocénforthaticna that play enpottantdrales in enzyme
regulation. The @ er mi-malli c@ s can adopt &) withobath act (o
helices close together in a coiledo i | or an ext expwile bth leekresf o r ma t
extended and making rtigle contacts with other subunits of [E2]. The conformational
change is related to the ligand interacting with the catalytic sites of the enzyme at any given
time. The interactions of ligands with noatalytic sites are not crucial for conformational
change [168]. I n this section, effects of differ
changes will be discussed.

As discussed earler, te colilU subunit can be digasted &b
and FoF1. As a result, trypsin treatment experiments higgeto important information
about the conformational sFhfaumeecetsi oinn UrGieD Cal
can transition bxpt w@ @ h 0o mama teixa re codf@mndatiod. U ¢ o mp ¢
Intact ATP synthase and isolatech Were trypsin treatk in the presence of various
nucleotides to elucidate c¢haf[l83el84]Themainhe cor
cleavage site wher f33t16% The deavagdyctiypsinisisewin n Ohe |
i s ol at)erdn E.(oliFob in the presence of post turnover conditions (MP-Pi
or MgATP to obtain MgADP-Pi ) t hat xdtaatoe. threi sU is beca
inaccessible to trypsiasitispacked bet ween UNTDreaydrdlysi®hel i x1
conditons of AMPPNP alonénonthydrolysable structural analog of ATP), ATP/EDTA,

ADP alone or MgADP but no Piead tof ast U C T Drhecelpiamatioa dgoehis is
that 4 t hough t hese c o rxdsittaitoen,s UdOTsD¥ aver t hdegh

intermediate conformation betwe€ha nes Wch that Uhel i xf2.is ava
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The post turnover nucleotides appebaox o ei
or decrease the xtaot kdrganic phosphate SR tappears to playam U
important b | e i n ma i xcon@rinationn@n the diher hdnd, the presence of ATP
+ EDTA, AMPPNP, MgADP, ADP alone predispose U t
conformation either byc opnrfeovrenmattiinogn t roarn shyt i @
t h & cotdormation. | t i s l i kely t hat t k eogformptiore &se n t t |
ot her wi se pusshsitnagt el wowtl do fmetame tthat the |ig
These changes were also studied in clokgg studies with 21ethyt3-[3-
(dimethylamio)propyljcarbodiimide (EDC) which allowed cress nki ng of U wit
when U koonfoimatiort fihe présence of MdP-Pi or MgATP allowed cross
linking of U with b whixcbhnforinatiehi cow tareodnt of hat |
crosslinking was observed when ATP + EDTA or Md@P were present, indicating that
U was ciconformatiom. Sihiar trends were also observed in thermoptiicillus
PS3[168, 170]. In addition, sodium azide, which inhibits the enzyme by stabiizing the
ADPi nhibited state, and al czconformaton iBacllusr | de &
PS3.I n addition to ligands, the conformatior
exposure to light in chloroplast ATP synthgd&'l, 173. This is important evidence dh
PMF can drive conformational <change of UCT
Detergents have also been shown to hayv
ethylene glycol have an all eviomaitactofiinef f ect
bacteria[149. Since U c an xcondrmyation nbAObtreatmeni probably e U
results in an U popul at i oncconbrendtionhlaisnotpr e dor

known how exactly this is achieveefound n add
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to affect b 6 s -cbam nakybetaiaglucopyranosidé Ifatkyighucosides)

detergents have been shown to a[t7§i vate chl
Many antimicrobial agents that successfully inhibit the growth of pathogenso d

by interfering with the function of enzymes that are vital for their survival. In bacteria, the

ATP synthase is one of the most critcal enzymes that plays important role in energy

metabolsm, nutrient uptake and pH regulation. These are importarsiolpbycal

processes and interference with any of these can result in reduced growth or reduced

viability. As a result, molecules that interfere with the normal functioning of this enzyme

within pathogenic bacteria can be potential leads for antimicradgehts. As discussed in

the introduction, the UCTD plays a regulat
mechanism of inhibition by UCTD is now kno
functional interplay be tcompetay cBar.duoridg actiiee e n z
enzyme turnover, there are multiple factor

is necessary to understand how these factors come into play so as to use the inhibitory
function of U t o .tTherrgseatch work tdsaimee in ithe folovimg t e r i
chapters wil help in developing better understanding about the sequence of events in

enzymatic turnover, place of U in that seqt
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1.6 Dissenation Overview

The goal of this dissertation is to offer n
in bacterial Ftype ATP synthase. We first attempt to understand the biochemistry and

kinetics -teltateal tdo@MaiCnds c otodiew ofiendutthero n a | (
confirmation of regulatory role for t he U
different ligands on the changes in conforrt
changes within the sequenic dextonve demanstrate the n a |

Il mportance of the terminal segment of the

subsequent impact on growth of bacteria with the hope that this new understanding wil aid

in the development of better antimicrobials in thHeréi

Chapter 2 describes the use of twl. coli mutants that have constraints in the native
function of their U subunit. We aqepringl t he ¢
domain either by deletion or by cress nk i ng -dicesi Previous stadiesthave
showed that trhei b0@TDfoirs erezsypre inhibition
responsible for binding to the o9 subunit.
conformational change and 9 rotation 1is not

an innovative binding assawe attempt to address these questions here.

Chapter 3presents compelling dat a -terimrak donsammo ws t |
for opti mal bacterial ATP synthase funct i
interactions with the enzyme can lead tastic reduction in respiratory growth Bf coli

When ATP synthase switches from synthesis
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subunit rotation reverses. This chapter shows that even though both reactions involve mere
rever sal ofong stuhbeunri ¢ gurlattatoin by U may not

distinct interactions with the enzyme in either direction.

Chapter 4 presents an innovative binding assay that can be used abemative to
Surface Plasmon Resonance. BiolLayer Interfelpymean offer binding kinetics of two
molecules with a small amount of sample. We describe BioLayer Interferometry in the
form of a methods paper and list out the technical requirements as wel as precautions

necessary to successfully use this technique.
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2.1 Abstract

Fi1-ATPase is the catalytic complex of rotary nanomotor ARthases. Bacterial ATP
synthases can be autoinhibited by eerminal domain of subuni] which partially
inserts into thee nzy me 6 s central rotor cavilUsnga o
kinetic, optical assay of1Rbinding and dissociationwe show that formation of the
extended, inhbitory conformationf U(Ck) inttiates after ATP hyrolysis at the catalytic
dwel step. Prehydrolysis conditions prevent formation ofCthetate, and postydrolysis
conditons stabiize it. We also shothat Uinhibiton and ADP inhibition are distinct,
competing processes that can folow the catalytiwel. We show that théN-terminal
domain ofUis responsible for initial binding toi@nd provides most of the binding energy.
Without the Gterminal domain, partial inhibition by thé&JN-terminal domain is du¢o
enhanced ADP inhibition. The rapeffects of catalytic sitdigands on conformational
changes of FboundUsuggestdynamic conformational and rotational mobility ia that

is paused near the catalytic dwell position.
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2.2 Introduction

ATP synthases play a key roleamergy metabolism in mo#ting organisms and
achieve energy coupling as dual engmgary nanomotorg1i 3]. The Ftype ATP synthase
of Escherichiacoli (Fig. 2.1), a bacterial prototype, is composed of caubunits that all
have homologs in the AT8/nthases of mitochondriand chloroplastg4]. The membrane
embedded & complex @lpcig) acts ke a turbine to transport protons acrdiss
membrane, and the external d@mplex (kbso U) tbntainsthree cooperative catalytic sites
for ATP synthesis or ldrolysis. The ring ofc-subunits, with the critical proton transport
sites, is the rotor complex obRnd connects to the centraltor stalkk of i, composed of
9 and the Nterminal domain(NTD)? of U The three catalytich subunits alternate with
three Usubunits to surround the upper half of the asymmetric stttk ofo, and thel-b,
connection forms a peripheral stastalk anchoringlkbsto the other stator subunit obF
a. In vitro, F. rom eukaryotes and bacteria can be dissociated fomas a soluble, rotary
motor ATPase, and thesa-RTPaseshave been useful for both mechanistic studies and
the determinatiorof high resolution structures.

Despite general conservation between bacterial and mitochomFRalsynthases,
it has been demonated that bacterialATP synthase can be an effective target for
antbacterialtreatment. It is the target of a novel class of compounds thdtaatericidal
for actively replicating and dormant mycobactefia 6] and that show promising effects
against mattidrugresistanttuberculosis in phase Il clinical trialg7]. However, the lead
compound is only effective against a narrow spectrum of mycobactewy, because it
targets theH*-transporting sites of d; adapting this scaffold to target other pathoige

bacteria introduces significant risk of crosgeaction with mitochondriaATP synthase.
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Figure 2.1
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Figure 2.1. Architecture of bacterial ATP synthase, and altemate conformations of
subunit U The smaller image bpttom lef} depicts theE. coli ATP synthase, with &
subunits spanning the membrane bilayshafed bok the arrow acrossthe bilayer
indicates the direction of proton {Htransport during net ATP synthesi§o subunits
(ribbons a (dark red, b, (gray), cio(green) andF1 subunit d (orange ribbon are from a
homologymodeled assembi13]]. All other F subunits are from determined structures
and are surfaceendered in the &1 model but displayed as ribbons in the magnified view
of E. coli F1 (3 a (greer); 3b (shades of blueg (yellow) eNTD (1-87) (ight pink), eCTD
(88-138) @dark pinK). The FoF1 model shows in the ec or compact conformationP¢otein
Data Bank entry 1BSH docked tog of ER-d (Protein Data Bank entry 30AAThe
magnified ribbon diagranshows thee-inhibited R-d structure Protein Data Bank entry
30AA) and omits the foremosh subunit to reveal the extended conformatione ¢€x);

for comparison, a ribbon model of tiee state is shown offset to the right. The ribbon
diagram of eack conformationshows spacdiling side-chain atomsdolored by element)
predictedin silico for mutations eA101C/L121C. Spacéling atoms are also shown for
ADP and S@ on the one occupied catalytic subunit (chain D). The molecular graphics

were prepared with Chimera [81].
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Recently, our group determined the first crystlicture of a bacterial iFATPase that is
in an autoinhibitedstate mediated by the-@rminal domain (CTD) of itsUsubunit [8].
Inhibiton by U may serve regulatory roles in ATP synthasek bacteria [2, 9 and
chloroplasts[10] but does not occur in mitochondrial ATP synthase, which has a distinct
inhibitor protein [L1]. Recent studies confrmed that the bactet®TD inhbits ATP
synthesis as well as hydrolysid2, 13, indicating thatUinhibition may provide a new
target for future development of antimicrobial drugs selective for bacteria. With that in
mind, thecurrent study focuses on improving our biochemical undersigndirhow the
catalytic R complex ofE. coli ATP synthase is inhibited By

As shown in Fig.2.1, theUsubunit has two domains. TH&TD, essential for the
F1 rotor connection to the-ring in Fo[2, 9, is ab-sandwich fold and exhibits a slar
conformation and association witho in several structures of bacteriah B, 14] and
mitochondrial E (MF1) [15, 16; essentially the sameNTD structure is also seen for
isolated bacterial 0 [19].7 However, the Uhelical UCTD has been observed in
dramatically different conformations (Fig2.1). A compact conformatiorithe Ct state) has
a coiledcoil between its twd}helices, and theecond helix packs against t&TD. The
(k state has beawbserved for isolated bacteril 17] 19] and in one baetial F structure
[14]. In structures of ME[15] and MR /A-ring [20], the homolog ofappears to be locked
in the Ut state by a mitochondrspecifc subunit E. coliATP synthase can synthesizad
hydrolyze ATP wherlis restricted to thék state[21], in which theCUCTD does not contact
any R subunits (Fig.2.1, left). In contrast, in the recently determined structureE ofoli
F1 (Fig. 2.1) [8], an extended conformation of th€TD (Ck state)contacts five other
subunits, and its terminal hal insertedinto the central cavity of  The positon and

subunit contactsof the CCTD within the E. coli F1 structure correlate well wittmany
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biochemical studies dfinhibition and interaction witother R subunits (reviewed in Refs.

2 and 9). The extensivéburied surface of thedCTD within the R structure and its
interactionswith two catalytic b subunits suggest that this form tbé enzyme represents

an inactive state. This correlates withe s u | ingeemoif e digal eo ( SkMmM st udi
E. coli [22] and other bacteri§23i 26], showing thatdcan induce orextend ong fpauses
(seconds) during which does not rotate in theresence of substrate MgATP. Some SM

studies concludedhat Uinhbits by sthiizing or extending an ADfihduced inhibitory

pause that occurs at the catalytic dweR, 24,27], whereas another recently concluded

that ADR and Uinduced inhbitions are separate processes for cyanobact&tigPs).

Some studies also concluded tthéinhibition includes oris dominated by changes to one

or more intrinsic kinetic steps along the catalytic pathwigdy2, 22, 28, 29]In the current

study, we adapt an optical assay to directly meatharekinetics of binding and dissociation

for E. coli F1AJand correlate these with inhibitory effects for wid type (VR mutant

forms of 0 Our biochemical evidence confirnisat inhibition by the CTD oflintiates at

the catalytic dwelbut also shows thdlinhibition competes with formation fdhe ADP

inhibited state. Further, where&inhibition initiates at the catalytic dwel, we also show

that the balancéetween active aninhbited states responds dynamicatly changing

nucleotide conditions.
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2.3 Results

Inhibition of E. coli F1 by Owith and without theCCTD

Uponin vitro dissociation of. coliF1 from the membranelJbecomesmore inhibitory but
can dissociate upon diution of Felieving inhibition of F-ATPase activity [2] For most
experiments irthis study,we used Ethat was depleted @fand Usubunits, oFi(-t JJThe

stator subunitli does not significantly affecFi-ATPase activity [42]but was removed
because its dissociatiofiom Fi could interfere with assays below fosBbinding and

dissociation. Fig. 2.2 canpares inhbition of K-U Yy WT and mutant forms of H&) and

Table 2.1 summarizes the inhibitioparameters from regression curves of Big and an
additional data set. As noted befor@0], the Nterminal Hisé tag onWT Udid not

significantly atterinhibiton compared withwT Uthat had the tag removed (Talfkl).

Also, inhibition was nottered by the Nerminal Bap tag added O(WT and mutants)
for kinetic assays offAbinding and dissociation (not shown).

For WT U] values for the inhibitoryconstantK and residualactivity of Usaturated Fagree

with earler estimate§29, 43. Weobtainednear | y t he s a rmbbitignaim a met er

assays with AT Km (not shown), consistent with noncompetitiven h'i b i tversus
ATP [29, 44]. Wealso show thathe >90% inhbition by saturating Wwas unaffected
by excess M@ (Fig. 2.2A), although K(-U Yhlone was inhibited>50% by 1 mM excess
Mg?* (Table 2.1).

To test for inhibition byJlacking its CTD, we usediB8stop,one of the largest -C
terminal deletions that stil allows assemiay FoF: that is functionally coupled, botim

vivoandin vitro [31]. InF i g . 2.1, b o t harecolorad noagemtdot the €-n s

81

by

of

C



Figure 2.2
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