Meld / Suffuse

Ashley Nettye Pollack

Master of Fine Arts
Metal Program

State University of New York
New Paltz, NY 12561

June 2021
Meld / Suffuse

Ashley Nettye Pollack

State University of New York at New Paltz

We, the thesis committee for the above candidate for the Master of Arts degree, hereby recommend acceptance of this thesis.

Amelia Toelke, Thesis Advisor
Department of Art, Metal Program, SUNY New Paltz

Lynn Batchelder, Thesis Committee Member
Department of Art, Metal Program, SUNY New Paltz

Bic Tieu Thesis Committee Member
School of Art and Design, Australian National University

Submitted in partial fulfillment of the requirements for the Master of Fine Arts degree in Metal at the State University of New York at New Paltz
My work started with a basic curiosity about non-ferrous metals. Why is silver whitish, why is copper pink-y, and why are there so many shades of gold? I was always drawn to gold for its range of colors. As an artist, trained as a painter for most of my life – in comparison to the five years I have been a practicing metalsmith, I always felt that the color palate of gold would lend itself to painting beautifully. I am not alone in this attitude. The ancient Egyptians experimented greatly with the color palette of gold. So great was their enchantment with the coloration possibilities that of, “The sixteen Akkadian terms for gold include nine refer[ed] to colour or shade” (Lindsay 214). Once I became a more invested metalsmith, I began to wonder – if gold could come in such varied shades, why wasn’t that also true for silver and copper? This is the origin of my preoccupation with alloys.

Alloys are simply the combination of more than one metal in a molten state for even distribution. This amalgamation of metal is done in order to endow the resulting metal with properties the original separate components did not previously have. For instance, sterling silver is traditionally an alloy of fine silver, that is to say pure silver, and pure copper. The fine silver composes 92.5% of sterling silver and the remaining 7.5% is made up of the copper. Sterling silver was created in order to give fine silver strength and rigidity while retaining its white coloration. Fine silver on its own is wonderfully soft and malleable, but often not durable enough for the everyday wear that jewelry experiences. Producing alloys can also have unintended consequences. If the goal in creating sterling silver was to enhance the strength of a whitish-colored metal, the unintended consequence was that the addition of the copper resulted in the metal's capacity for oxidization. Fine silver (and fine gold for that matter) is, among other reasons, referred to as such because of its perfect resistance to oxidation. Despite exposure to the elements, fine silver will always retain its white color. Copper on the other hand oxidizes powerfully. Since the goal of adding copper to silver was not to change its color, metallurgists and manufacturers have tried combining fine silver with a number of other metals in hopes of achieving a metal with both strength and a distinct lack of oxidation. If you have ever noticed a 925 stamped on your jewelry, it is a hallmark representing the percentage of silver in the alloy. The number 925 signifying 92.5% has long been the hallmark of sterling silver where it was fair to assume the alloy was composed of fine silver and pure copper. However, the development of alloys such as Argentum silver and Hoover and Strong's
trademarked TruSilver can all be hallmarked as such. Both of these newer alloys maintain the 92.5% fine silver part of the equation but have altered the contents of the remaining 7.5% in hopes of developing a white-colored metal that is both strong and resistant to oxidation. Argentum silver adds germanium to fine silver and TruSilver adds a combination of copper, zinc, tin, indium, silicon, and boron in an undisclosed ratio (Hoover and Strong Website). Argentum silver was invented first. Its success in developing a white-colored, tarnish resistant, and strong metal was encouraging, but as may be expected, there were also unintended consequences; Argentum silver is far more brittle than traditional sterling silver and more challenging to fabricate with. On the other hand, it fuses easily and is also firescale resistant. TruSilver, though a newer experiment, shares the same goals as both the origin of sterling silver itself and Argentum silver. The developers appear to have achieved the opposite of Argentum silver with TruSilver. This newest silver is easy to fabricate and tarnish resistant, but it fails to reduce firescale and it cannot be fused. All of this is to say that alloys are experiments with infinite possibilities, and that color is usually one of the primary motivators for new combinations. It was true for Ancient Egyptians making gold alloys and it is true of any alloy made today for jewelry or ornamentation.

With this in mind, my initial interest in color quickly led me down a rabbit hole of alloys and alchemy. I lost sight of color for a while and became absorbed in the process of alloying. It had taken on a magical quality. From weighing the metals to the correct portions, to the melting of the metals in the crucible, to watching them become one material, and finally, to the pouring of the ingot, the entire process is alchemical. Alchemy, popularized during the early modern period in the West, was the precursor to modern chemistry and physics. Alchemists sought to understand the world through ritualized experimentation founded in observation. It is the melding of materials together in order to see what happens as a result. This kind of knowledge is personal, and the intimate relationship with material is difficult to catalog. The foundation of alchemy has deep roots in craft. In fact, much of the natural philosophy of the ancients was “drawn from human crafts and industries. The term for the creator (or fundamental creative activity) is demiourgos, craftsman.” (Lindsay 15). Metalwork is the perfect example for examining how craft-knowledge shaped seventeenth century alchemy. Writer Jack Lindsay explained:
From the very first, metallurgy must have involved various magics and ritual-practices with their expression in myth. The extraction of metal from ore was itself a form of transmutation, which must have produced a great awe and sense of wonder translated into rituals meant to safeguard, analyse and help the processes. The same situation appeared in other crafts connected with fire as a transforming agent: cooking which changed flesh or plant in various ways, and potter-making which changed a soft, pervious substance into a hard impervious one, giving earth something of the character of a stone. In all these processes the qualities of the materials were changed. Such important craft-systems, considered to involve dangerous potencies and crucial moments of change, were hedged round with ritual secrecies, oaths, mysteries of all kinds. The operators formed a fraternity fiercely guarding its lore. There was clearly a period when the smith was a sort of semi-divine shaman owing hidden forms of contact with the spirit world. (Lindsay 212)

I got lost in the magic for transmuting the physical world through both the concept and practice of alloying. Lindsey hits on the exact word that sums up the feeling: wonder. I am in awe of the material transformation I am capable of bringing about in metal. From this experience onwards, my work has been about producing materials that induce sensations of wonderment through the invocation of a fascination that stems from uncertainty regarding the material’s origin and essence.

Being the causation for this kind of physical metamorphosis, it is easy to imagine oneself as somewhat of a cross between magician and mad scientist; essentially, an alchemist. Painter, art historian, and critic James Elkins makes an extremely compelling argument for his idea of artist as alchemist and artistic practice as alchemy. This notion falls into the same vein as Lindsey’s statement that alchemy originated with craft. A former painter himself, Elkins uses painting to create parallels between alchemical practice and artistic practice:

Painting is alchemy. Its materials are worked without knowledge of their properties, by blind experiment, by the feel of the paint. A painter knows what to do by the tug of the brush as it pulls though a mixture of oils, and by the look of colored slurries on the palette… Artist become expert in distinguishing between degrees of gloss and wetness—and they do so without knowing how they do it, or how chemicals create their effects. (Elkins 9)

In metalsmithing, the smith knows when the pure metals are fully molten and melded during the alloying by observing the fluidity of movement and surface tension happening in the crucible. Elkins continues on to say that, “After a lifetime of experience, an artist comes to know a very small number of [materials] intimately… but knowledge gained in the studio is
every bit as engrossing and nuanced: it's just that instead of learning words, painters learn substances...it is a form of knowledge, and it is the same knowledge that alchemists had" (Elkins 22-23). In both alchemy and art, the practitioner is manipulating physical matter based on a personal and learned experience with material. What this type of knowledge lacks in comparison to modern chemistry, it more than makes up for in the intimacy of the relationship between the material world and the alchemist/artist. Instead of the hard rules in chemistry, this type of material knowledge leaves room for conversation. It becomes a language between the material and the artist. In all the techniques I employ, even the most basic — annealing for example — I need to listen to my materials and see what they are telling me. Teaching myself keum-boo for the Reverie bracelet was all about this practical knowledge. To understand the technique in literature and to actually know how to create the delicate fusion between the two metals, fine gold and sterling silver, are two very different things. It is easy to read and understand a description that says heat and pressure work together to have molecules in each of the two metal surfaces bond and another thing entirely to learn through practice the tension in the your hand as you press down on the two metals, to feel the burnisher stick just a little the fragile gold foil indicating that the steel is just about to get too hot, to observe how close the flame is to the work and how gentle or aggressive the flame needs to be. With the Reverie bracelet, I added to the challenge of teaching myself a material knowledge from a book by applying the keum-boo in a non-traditional way. Keum-boo is usually the last thing done to a work before finishing, if there is any to be done at all. I applied the keum-boo before folding my metal into form and soldering in order to have the gold applied on the inside of a hollow form. I continued to reheat the keum-booed metal when I applied the posts and made the balled connections. The reason heating after applying keum-boo is not traditionally done, although I am sure others have done so before me, is because the levels of heat needed to fabricate can easily cause the gold to become absorbed into the silver. The flame shape, direction, and temperature all became critical to finding a balance between what is, at the minimum, necessary for soldering and keeping the heat as low as possible to discourage the gold from being absorbed into the silver. This kind of knowledge, although a language of its own, is very hard to impart in words. An all-encompassing description of the flame and the exact handling of the torch cannot be put down in a book. Careful and committed observation is the best way
to learn, followed by trial, error, and experimentation. Science takes from alchemy, the need for observation as well as trial and error, but leaves behind the opportunity for the unexpected in its instance on perfectly measurable processes and repeatable results: “Chemistry can only go so far, and then intuition, creation, skill, genius, imagination, luck, or some other intangible has to take over. Alchemy is the generic name for those unaccountable changes: it is whatever happens in the foggy place where science weakens and gives way to ineffable changes” (Elkins 121).

Figure 1: Reverie (bracelet), 2020, sterling silver, 24kt gold foil, Argentum silver
I wanted to use the presence of alchemy in *Reverie* to call upon wonder not just through the process, but also through conjuring up the era during which alchemy was at its zenith. The modern world is a very subdued world. During the renaissance and the early modern period, “Natural philosophers, or natural magicians as they were called in the Renaissance,” existed in a vibrant, magical, “enchanted universe” (Banchetti-Robino 174). It was a world in which matter and substances were unknown and full of potential, everything was teeming with life, “and where ordinary things from certain materials to landscape elements could have special powers and properties” (Herva 613). Elkins fittingly wrote: “To learn the speech of alchemy it helps to think back to a time when there was no science” (Elkins 23). Philosophies of the sixteenth and seventeenth centuries were imbedded with the belief that, “that the physical universe did not consist of inert matter but either was itself animate (i.e., it contained a ‘world soul’ or anima mundi) or was inhabited by vital forces and
spirits that played a causal role in the occurrence of natural phenomena” (Banchetti-Robino 174). All matter was alive and exhibited agency although much debate surrounded the definition of that life. This was the landscape in which alchemy and its practitioners inhabited during their peak. Professor of archeology, Vesa-Pekka Herva calls attention to the different way in which the supernatural was separated from the natural in the post-medieval world: “the division between the natural and the supernatural was drawn differently then from now… it was quite unanimously accepted that things and materials had special powers and properties which might be hidden (‘occult’) but not (necessarily) otherworldly in origin” (612). Modern “Western thinking with its essentially mechanistic and physicalist assumptions” is far removed from the vitality and dynamism of the early modern period (Herva 614). The mechanical philosophy that abounds today “accounts for all changes in inorganic and organic material bodies through deterministic and mechanistic laws of motion that are external to matter itself… For mechanists, matter is not intrinsically active or self-organizing and its motions are not self-determined” (Banchetti-Robino 180). Today, we conceive of the universe along the line of our modern understanding of Newtonian physics; forces act on objects, the objects themselves do not act. As a result, we exist in a demystified world. Our understanding of the world through modern chemistry extinguished the vibrancy of the post-medieval world. Marina Paola Banchetti-Robino surmised the shift beautifully: “Put briefly, when the world soul became potassium nitrate, the ‘disenchantment of the world’ had begun” (185). Thus, the presence of alchemy in my work is two-fold. It serves to produce wonder in two ways: through the practice of alchemy itself in the making process, and through its ability to summon ideas of a bygone area where magic and mystery imbued the materials of our everyday life. I like that both of these are in the background of my work.

I believe alchemy to be the midway between the fundamental ideals of the Enlightenment and Romantic eras. Alchemy may be where modern chemistry is given life, but it is also, where Romanticism finds its emotive aesthetic. I see the Romantic period as direct response and rebuttal of the rigidity and lack of mysticism that was championed by the Enlightenment. Alchemy is both a quest for knowledge and a tribute to the unknowable: the forces in our world that inspire awe. Therefore, for me, alchemical methods appeal to two key
aspects of humanity: our need to try to understand the world we inhabited and our need to believe in something greater, something intangible. Alchemy illustrates how those two desires do not have to be in contention with one another as they are both crucial to an alchemical practice. Knowledge and wonder are both equally important to the success of my work and so alchemy is the perfect methodology for me to employ in my research and studio practice.

After the *Reverie* bracelet I took a step back, and I remembered color. As a result, my alloy research went on an abrupt tangent towards patination. A patina is a surface level chemical reaction between an alloy and a chemical solution or exposure to the elements. Patina's can drastically change the look and feel of a metal surface physically and emotionally. Patination and alloying are not really separate areas of research, they go hand-in-hand. Every alloy will react differently to the same patina and each patina will produce a different result on the same alloy; you cannot study one without the other. Japanese metalsmiths have explored this relationship in more depth than any other culture. Therefore, I chose to use traditional
Japanese formulas for both alloys and patinas for my own research. I limited myself to alloys composed of only copper, silver, and gold, and selected four of the most wildly used and relatively harmless Japanese patinas to modify. With these restrictions, I made over 200 individual samples. Allo
ing may be a fascinating process, but it is hard to appreciate its magic after the ingot is poured, then it is just a chunk of metal. The alchemy of patination remains visible; color is the most noticeable thing about a surface. It is there for anyone, not only metalsmiths, to get engrossed in. There are many ways to color metal. In the original gold example, it is the alloy composition itself that gives the metal its color, thus the color will be present throughout the metal whereas with Japanese alloys of copper and silver it is surface level. Patinas maybe surface level comparatively, but they do penetrate and interact with the metal, unlike a coat of paint that sits on the surface touching but not melding. It is true that patina's may be easily sanded way, perhaps not their most desirable attribute, but valued not for their durability but for wonderous and vast arrays of colors, all of their faults, difficulties, and
delicacies are forgotten or forgiven. Particularly, when you are looking upon a work you may not even believe is metal in the first place.

From there it became all about color combinations. Creating painterly compositions with patinas is all about alloy placement and marriage. I did a number of experiments to test out different ways different alloys could be joined and rolled out into sheet. Two of those studies, *Meld / Suffuse I* and *II*, ended up as finished brooches and part of my final thesis exhibition. *Meld / Suffuse I* is composed of shibu-ichi and 24kt gold foil encased in a sterling silver frame. The gold foil was applied using keum-boo, and all the practical knowledge I gained during the making of the *Reverie* bracelet still fresh in my mind. I was curious to see if the gold would bond to the surface. Shibu-ichi is a copper/silver alloy much like sterling so it would have been possible to depletion guild the metal ensuring a strong bond, but I needed the gold to adhere to the surface without doing so to achieve the color I was after. If I had raised the fine silver to the surface, any patina I would later apply would have been ineffectual. As I explained early on, fine silver is so named because it does not react to oxidization, it will remain bright and gleaming for all time heedless of what it comes into contact with. It is the copper in the shibu-ichi, just as it is in sterling silver, that oxidizes and reacts to the patina solution. The ratio between copper and silver certainly effects how the alloy will react, but nonetheless, it is important that the copper remain mixed into the surface of the metal in order for any patina solution to cause a reaction. This is compounded by the fact that sanding away the thin layer of fine silver after raising and applying the gold would also result in the removal of the fine layer of gold on the surface, defeating the purpose. Fortunately, and a little bit against logical deduction, the gold foil bonded easily to the shibu-ichi. An instance of alchemy producing results scientific theorizing would rebel against. If you were to follow the theory of how keum-boo bonds the crystalline structures of fine silver and fine gold together strictly, then the presence of copper should have totally disrupted the melding of molecules that is supposably occurring between the two metals. However, in practice, it works; entirely wonderous in its inexplicability.
Figure 6: Patina studies on mixed alloy samples

Figure 7: *Meld / Suffuse II* (brooch), 2021, shibu-ichi, sterling silver, 18kt gold solder, steel pin stem
Front and back view (left to right)
A subcategory of work in the series, in my head, dubbed 'The Irregulars,' came next. That subgrouping consists of *Meld / Suffuse III, IV and V*. These three brooches together exemplify a lot of the ideas I was grappling with while making as well as a significant leap forward aesthetically. The first of the three explored an entirely new way of marrying metals as well as a departure in rigidity that had up until at point been very persistent in the form of my work. *Meld / Suffuse III*, a combination of sterling silver, fine silver, and copper was transformed into sheet by wrapping fine silver and copper wire around each other placing the twisted metal in a sheet ingot mold and pouring molten sterling silver over it. I then employed the Japanese metal patterning technique used in mokume-gane in order to reveal some of the fine silver and copper. Mokume-gane is a mixed metal lamination technique that carves away metal from a fused stack of different alloys, called a billet, in order to create patterns that showcase the different metals. The process revolves around carving and rolling out the metal so that the lower layers come through to the surface. I took what could be considered an unconventional billet and intermittently carved into it and rolled it out into sheet. I created

---

Figure 8: *Meld / Suffuse I* (brooch), 2021, shibu-ichi, sterling silver, 24kt gold foil, steel pin stem
Front and back view (left to right)
Meld / Suffuse IV and V in the same way using different alloy combinations and finishing each piece with different patina solutions. These pieces highlight the materiality of the process and the organic patterning calls attention to the mysticism that is almost innate in metalworking. The patina in these pieces really works to delineate the metals and call attention to the fact that the sheet is not a homogenous material, and the fact that the patterning is not just surface level, as the presence of a patina might suggest. In addition, the unpredictability of the final result, that is a constant throughout the process is emphasized by the irregular patterning and edge. That uncertainty, in turn, highlights the sensation of wonder that the pieces evoke.

Figure 9: Meld / Suffuse III (brooch), 2021, sterling silver, fine silver, copper, steel pin stem
Front and back view (left to right)
Figure 10: Meld / Suffuse IV (brooch), 2021, shiro-shibu-ichi (60%Ag/40%Cu), nami-shibu-ichi (25%Ag/75%Cu), shibu-ichi (7%Ag/93%Cu), fine silver, sterling silver, 18kt gold solder, urushi, steel pin stem
Front and back view (left to right)
Figure 11: *Meld / Suffuse V* (brooch), 2021, Australian sapphire, shiro-shibu-ichi (60%Ag/40%Cu), nami-shibu-ichi (25%Ag/75%Cu), shibu-ichi (7%Ag/93%Cu), fine silver, sterling silver, 18kt gold solder, steel pin stem
Front and back views (left to right)

The ‘Irregulars’ are thus nicknamed in reference to their outer edges. The mixed metal panels deviate strongly from the very rectangular nature of not only the *Reverie* bracelet, but also, the first two brooches in the series. However, the rigidity is not completely absent. It makes itself known in the construction of the mountings and mechanisms. I felt it was
important to have some component speak to a level of control being exerted over the material. Despite their organic appearance and the unpredictable nature of marrying metals in this way, it is not an entirely unstructured process or unforeseeable outcome. The pieces are the result of extensive research and decisions made throughout the process. Those choices are made with goals and expectations in mind. Therefore, the irregular edge formed through the process of rolling out the material – a process that in and of itself can be, and was, manipulated to a certain degree – underscores the magic of the material while the linear backs of the pieces hint at the science aspect. I think it is fitting that it is the functional part of the pieces that correlates with the precision of modern scientific inquiry since it is that which transforms the pieces from specimens into purposeful objects.

Figure 12: *Meld / Suffuse IV* three-quarter view
'The Irregulars' also introduced two new elements into the equation: the first—Japanese lacquer, urushi, in *Meld / Suffuse IV*, and the second—gemstones, an Australian sapphire slice, in *Meld / Suffuse V*. The black urushi creates an incredibly seductive surface. The silkiness and depth are an exceptional compliment to the patterning and coloration of the metal work in *Meld / Suffuse IV*. In much the same way that metalsmithing processes I use in my work are material knowledge driven, so too is the use of urushi. Countless hours of trial and error along with many video calls with one of my mentors, Bic Tieu, who's studied lacquer, were necessary before, it was even possible for me to successfully adhere the lacquer, designed for wood, to a metal surface. In the way that it was not terribly difficult to apply what I read about keum-boo and transform that literary knowledge into practical know-how, it was horrendously challenging to do the same for the urushi. The viscous material must be applied so thinly it is almost a transparent film, and the humidity and temperature necessary to cure the material needs to be artificially recreated to match that experienced in Japan where the material and all the surrounding techniques where developed. I had to learn, at the suggestion of Bic, that adding plaster to my artificial environment might work after many failures at curing despite creating a situation that matched the correct temperature and humidity necessary. Urushi is undeniably a temperamental material, but the richness of the surface is unparalleled. Using Japanese lacquer is as much a practice of alchemy as metalsmithing and the end product is equally enchanting.

The introduction of a gemstone in *Meld / Suffuse V* sets the precedent for the remaining five pieces in this body of work and future ideas. Gems in and of themselves are astonishing, otherworldly, and often times literally phenomenal. In *Meld / Suffuse V* the sapphire slice, set perfectly flush with the metal on both the front and back, serves to bring the entire panel into the realm of a sliced mineral or earth despite the fact that its entire existence is brought into being by extensive human manipulation of natural materials. While working on this piece, I was simultaneously working on *Meld / Suffuse IX* (titled last in the series on account of the fact it was the last piece to be fully complete). IX is designed around the depth the surface that both urushi and solid opal can achieve. In both works the idea was to make the stone merge fully with the surface be it metal or lacquer. This concept is central to *Meld / Suffuse V – IX*. 
Figure 13: *Meld / Suffuse IX* (brooch), 2021, Australian black opal, sterling silver, urushi, steel pin stem
Front and back view (left to right)

Figure 14: *Meld / Suffuse V* (brooch) three-quarters view
After *Meld / Suffuse V and IX*, the gemstones became a jumping off point for the color goals of the metal surrounding, they provided direction. I began leaning more heavily towards opal. The colors opal achieve naturally in the earth are unrivaled, and even if another type of gemstone were to come close it would never be able to compete with the ranges of colors present in a single opal. Some varieties of opals, the ones that I am working with, exhibit a phenomenon called ‘play of color.’ Play of color references the flashing of many colors as an opal moves and light refracts across its surface. There is nothing else like opal in the natural world and humans have not yet been able to recreate it in a laboratory (not for a lack of trying). For me, opals are mother earth practicing alchemy. Opals are delicate stones, prone to ‘crazing,’ developing a crack like pattern below the surface when dehydrated, and are sensitive to oils and chemicals. They will readily absorb any solution they come into contact with to the point of self-destruction. And so, patinas are both the perfect match in sensibility as well as an unideal counterpoint to physical coexistence on a shared surface. This tension presents a wonderful problem-solving challenge in *Meld / Suffuse VII* and *VIII*. It was critical to consider the fact that if the opal was set first, it would not be possible to submerge the piece in a boiling chemical solution without seriously risking the destruction of the stone. On the other hand, if the patina were to be applied and then the opal set, the setting process would remove the thin layer of patina around the stone. In the case of *Meld / Suffuse IX* with the lacquer, the first layer of lacquer needs to be heated to 300 degrees Fahrenheit to cure and remain bonded to a metal surface. It is of course not possible for an opal to withstand such temperatures. Thus, the first layer of urushi, the only layer requiring heat, must be applied before the stone is set carefully to avoid damaging the lacquer before the next layers of lacquer are applied equally as carefully around the opal. I find that seeing these materials exist harmoniously on a surface when they could destroy each other in the process of coming together makes these demanding pairings all the more enchanting.
Figure 15: *Meld / Suffuse VIII* (brooch), 2021, Australian boulder opal, shiro-shibu-ichi (60%Ag/40%Cu), sterling silver, steel pin stem
Front and back view (top to bottom)

Figure 16: *Meld / Suffuse VII* (brooch), 2021, Australian black opal, nami-shibu-ichi (25%Ag/75%Cu), sterling silver, steel pin stem
Front and back view (top to bottom)
For me the most stand-alone brooch in the series is *Meld / Suffuse VI*. Although it takes its outline from ‘The Irregulars’ as well as the inlaid sapphire setting, draws on the use of gold foil from the very first brooch in the series, and is also patinated, the texture on the surface separates it from the rest. The gold foil in this piece is applied through yet another Japanese technique called nunome-zogan. It is a hammered pattern that creates a woven-like texture on the surface that the foil is then inlaid into. I have just begun to explore the possibilities that this way of combining metal offers. The way the gold shimmers on the surface reminds me of how light bounces of faceted gemstones and I am interested in finding ways to call attention to that relationship. I also think the relationship between textured and smooth as well as texture’s effect on patination as a lot of potential when looking at the front and back of the piece side by side. Art historian, Jean Robertson, concludes that, “It is not uncommon for “[artists] view the practice of art itself as a field of research inquiry…” (Robertson 333). I fall easily within that category. My making is so much a result of material curiosity that finished work becomes a way for me to share my findings after many studies, trials, and tribulations.

Figure 17: *Meld / Suffuse VI* (brooch), 2021, Australian sapphire, shiro-shibu-ichi (60%Ag/40%Cu), sterling silver, 18kt gold foil, 24kt gold, steel pin stem
Front and back view (left to right)
One of my inspirations in the field, jeweler Francesco Pavan, is quoted to have said, “[The material, therefore, is the primary inspiration for the work process and, consequently, suggests the theme itself. Formal invention indeed cannot disregard the emotional impact initially made by the material and its substantial properties]” (Maurer-Zilioli 16). The desire to enhance the already, as Pavan claims, impossible to ignore emotional weight of my materials is a core tenet of my studio practice. Since my work is materiality driven, it is not a reach to suggest my explorations will go beyond metal; however, I have to say I think it unlikely. Although I may supplement it with other compliments as I have already done, I predict I will never leave metal entirely. It is not for a lack of curiosity about other materials, but rather a result of the fact that it will take a lifetime to really know just metal. Elkins explains inability to move on from one medium when he writes: “Despite the rise of multimedia, film, video, and installation, the majority of artists master their materials, and the majority of painters do not stray any farther toward modern technology than acrylic paints or brushed aluminum: not because they are suspicious of technology, but because there is so much to learn about even the simplest substances” (Elkins 34). Once you begin alloying in metal the possibilities are endless. It is no longer even a simple substance, but one that can become infinitely more complicated with additions and innovative combinations. In the same way that metal is essential to my practice, so too is the jewelry aspect of the work. The wonder produced by the work is exponentially increased when it is touched, held, and moved in the light. That tactile experience of material is only encouraged in jewelry. My work is meant to have a dynamic existence in the world. That can be accomplished through the wearing that only jewelry offers. The magic is not lost when a piece is physically interacted with, on the contrary, when held the material may undercut the expectations placed upon it, adding a whole new level of mystery and fascination, intangibility in the tangible, the perfect riddle.
Figure 18: All works exhibit for MFA thesis show May 2021 shown to scale with each other
Work Cited


