Rosa Loveszy

Shield and Shelter

Master of Fine Arts Sculpture Thesis
State University of New York at New Paltz
2020

Thesis Advisors:
Prof. Emily Puthoff, Prof. Michael Asbill, and Prof. Kate Collyer

www.loveszystudio.com

Figure 1. Shelter, 2020
Acknowledgments

I wish to thank many people who have impacted my growth and development while pursuing my graduate education. First, I would like to thank the sculpture program faculty, Emily Puthoff was a wonderful resource and supported my exploration into the three-dimensional realm. Professor Puthoff was able to roll with the changes as the events of COVID-19 changed the world. Throughout the year she was able to continue offering her guidance and support through virtual meetings and socially distant in person critiques. I look forward to the future where I can give my thanks face-to-face without the aid of digital technology. In 2018 Michael Asbill taught a class called Collaborative Constructions, this course introduced me to the joys of sculpture and working with others in a creative space. Professor Asbill demonstrated what it means to care for each student and the work they create. He was always pushing me to think more critically and helped me see my work from a different perspective. Kelly McGrath, the current sculpture studio technician and Steve Rossi, the former technician, both helped me learn to use the studio equipment to buildout my artistic vision. The sculpture program became a home when I really needed a place to feel safe and supported. Within the sculpture program, I developed many wonderful friendships that blossomed into professional relationships. I’d like to thank my good friends Maxine Leu, Joseph Kattou, Erin Dougherty, Sanford Fells, Megumi Naganoma, Nell Choi, Amanda Heidel and many others.

I’d like to thank my external evaluator Kate Collyer who was so kind to agree to advise me the first time we ever met. She has been a wonderful resource and friend throughout this process. Her interest parallel mine and her life experience has inspired me.

I also wish to thank all the other departments who accommodated me and supported my multidisciplinary interests. Thank you to Jill Parisi, who thoughtfully walked me through my first time making paper; Maggie Oaks who has, on countless occasions thought me to use equipment even though I was only a visitor in the printmaking department, Bryan Czibesz was a patient advisor as I struggled through the basics of learning Grasshopper, Michael Humphreys, Conner Landenberger, Ed Felton, Ben Kellogg, the DFL work-study students, and my graduate cohort who were always there to provide critical feedback when I needed it most.
I’d also like to thank the staff at the Samuel Dorsky Museum of Art, Anna Conlan, Bob Wagner, Wayne Lempka, Amy Pickering and Zachary Bowman, they were wonderful mentors, coworkers and supporters of my endeavors. Outside of the SUNY New Paltz campus there is a large community of artists and creators who I have had the pleasure of meeting and befriending. Thank you, Richard Frumess, one of the founders of R&F Paints in Kingston, Pamela Blum a terrific artist and thoughtful educator, Lauren Pearlman-Sugita who has, on multiple occasions welcomed me into her Paper Connection warehouse full of papers from all over Japan and other parts of Asia, she has been a wonderful supporter of my interest in paper both in the US and in Japan, and thanks to many others whose names I recall while reflecting on all the wonderful experiences I have had while living in the Hudson Valley.

Artist Statement

In nature, many mechanisms have evolved to ensure the safety and survival of an organism. Humans lack many methods of self-defense. My work draws on the design that has evolved for thousands of years, mimicking defensive characteristics of other animals and plants. I explore the relationships between the form and function of protective biological systems in my work. This series, Shield and Shelter, references the type of cellular arrangements that allow water to move through the tissue of a tree. The cell structures support the organism by transporting water and nutrients to ensure their safety and longevity.

Many of these growth patterns can be defined mathematically and therefore replicated. Drawing on these natural forms, I modeled the cells using a parametric modeling program called Grasshopper. Each cell was created using a population of data points which were then connected using the Delaunay triangulation, producing lines between points at certain angles. With the laser cutter, I took the forms out of the digital realm and precisely cut the complex shapes out of handmade paper. The papers were made using three types of plant fibers (abaca, cotton, jute, and kozo) with some coffee grounds included in one of the batches. Shield is a manifestation of boundaries we often perceive as intangible; these structures give shape to one of the many protective mechanisms that have evolved over time.
In nature, many mechanisms have evolved to ensure the safety and survival of an organism. Humans do not have a poisonous skin nor a hard-outer shell and lack many other methods of self-defense. Through observation and instinct-driven behavior, humans have learned to mimic the defensive characteristics of other animals. Drawing from the forms and mechanisms designed by evolutionary processes, I explored the relationships between the form and function of protective biological systems in my thesis research. My thesis works are based on imaginary representations of a divergent evolution where cells grew and evolved into organisms whose sole purpose is to exist as a guard, offering protection to our vulnerable bodies.

Since embarking on this project in the fall of 2019 there have been a slew of developments and changes as the work evolved. I recall my first thesis meeting with my MFA sculpture advisors, Michael Asbill and Emily Puthoff. We were sitting in a circle looking at rough plans I had drawn up the weeks prior. During this meeting I was nervous due to many factors, but the most nerve wracking was the vagueness of my concept. I approached this project in hopes that my environment, interactions, conversations and influences would all lead me to finding the forms within my idea. The hardships and unexpected twists and turns I’ve experienced this past year provided opportunities for growth within restriction.

During that first meeting we discussed how I wanted to give shape to the mechanisms and processes invisible to the naked eye. When I was confronted with the question, “What will the work look like?”, I really could not define what I intended to do. The concept, however, stuck with me. I wanted to base the sculptures on biological devices that exist on a microscopic plane. I think of all the mechanisms in nature as being an open system. For a microscopic environment to be completely sealed off from its exterior surrounding means that there would be no input of
energy and no excretion of waste. Everything is porous and this permeability allows for exchange between layers and various atmospheres.¹

This need for natural environments to have exchanges is fundamental to the way cells have evolved over millions of years. Although evolution is a process that continually pushes the development of organisms ahead, it is not perfect. Humans have been evolving for thousands of years and in light of the worldwide pandemic I was reminded of the vulnerability of human beings. We think we are so advanced and can control our environments, but despite all the development, our physical bodies are still susceptible to many dangers.

The COVID-19 pandemic has dramatically altered many aspects of life. My thesis exploration was changed by the measures enforced. Halfway through the spring 2020 semester, I lost access to my studio, the tools, and the people that propelled me forward. As the world changed before my eyes and most of society began self-isolating, I noticed how the citizens of the world began taking their personal protection seriously. My research looks into the configuration of “protective mechanisms”, such as seed pods and the architecture of shells.²

Employing mixed-media approaches and experimental techniques, I built modular structures that reference microscopic mechanisms that exist in a world beyond our vision.

Early in my life as an artist, I was very interested in observation and representation. I strove to create windows into new realities using traditional mediums such as charcoal and oil paint. As my worldview expanded and I sought new avenues to inform my artistic practice, I became aware of the intricate patterns and many mysteries held in nature, such as the design of a single leaf. The desire to represent objects of the natural world evolved into drawing processes and defining abstract scientific ideas. Early in my career as an artist while pursuing scientific illustration, I was amazed by the structural diversity of nature at every level of magnification. I illustrated insects, tissue samples, medical processes, artifacts, and cosmic phenomena. Each area was extraordinarily unique, and yet below the surface, there were striking similarities. The

aesthetics of these various research fields have been a significant source of inspiration as I began exploring non-figurative modes of representation. My recent body of art appears abstract. However, my compositions are strongly informed by the internal microscopic environment of the human body and the macroscopic terrestrial environment. There is a myriad of systems that have been invented by nature over the course of time. I have explored the abstractions of these systems in the 2019 exhibition “Systems of Connection.”

In this phase on my research, I sought ways to create work that functions in the world. When a snail shell lays empty, it often becomes a souvenir for the passer-by, but when it is inhabited, the shell’s protective qualities are activated. My objective as a sculptor is to make work that is activated by the presence and interaction of people.

My sculptures do not provide any real protection, instead, their function is entirely symbolic. There are both tangible and intangible threats to human life and wellbeing. The words “shield” and “shelter” are synonyms of the word “protect.” I chose these words to convey the function of

the two different cell growths. Shield (refer to figure 17a. and 17b.) is intended as a barrier to guard from threats coming head on. This work represents the barrier, defending against intangible threats. In my mind, Shield acts as a sentinel for one’s mental environment.

With regards to the health of a system, as stated earlier, there needs to be an exchange between the interior and exterior. Locking one’s self in a space devoid of any permeable membrane is not a suitable solution to dealing with issues of mental well-being. The lifestyles we all engage in has led us to experience high levels of stress and fatigue which easily impacts mental health and stability. Shield creates a space with a porous membrane that functions like a filtering mechanism. Individuals can pass through, observe, and experience each layer of the filter. As each layer is explored viewers are able to peer through to see only a bit beyond the current layer, allowing only some visible fragments of what awaits.

In the most recent rendition of Shield, I decide to change the name. Different levels in the hierarchy of species evolution grant each new node in the tree a new name to differentiate from their predecessors. Laminae tegimen is the new title of the physical iteration of this series, refer to figure 3. The name, once again, refers to protection. “Laminae” is defined by Meriam Websters Dictionary as “a thin plate or scale: layer.” The sub-definitions are also relevant and support the use of the word in the title. “Tegimen” is one of the several Latin words for “shelter.” The physical iteration is the latest step in the evolution of my thesis series of work and therefore deserves to be differentiated.

As I go for a walk through the forest, I am always shocked to observe the ways nature is able to guard itself. Looking at the seed pods that drop from trees carrying vital reproductive components all the way to the shells being hauled on the back of snails. Shelter was inspired by these hard outer shells that defend their precious interior. This work relates to the physical dangers present in the world; Shelter has the potential to defend the body encased in its small pod-like space. This design is also porous but is able to encase whoever is inside because of its concave structure.

My interest in emulating the complexity of nature led me to learn about the developments in art and architecture using parametric design. “Parametric design is a process based on algorithmic thinking that enables the expression of parameters and rules that,
together, define, encode, and clarify the relationship between design intent and design response.”\(^5\) When one element of a sizable repetitive element is changed, the change is global among each element sharing the relationship. One of the most well-known pre-digital employers of this type of design was Antoni Gaudi. He used factors such as length of material, repetition, and weight within set parameters to develop the complex forms built into the architecture of the Sagrada Familia.

Figure 4. Force Modeling, Gaudi, 1883-1926

Rosa Loveszy | MFA Thesis Sculpture, 2020
While many artists work across disciplines, I will only name a few whose work was influential in my development. Artist and architect Ronald Rael visited the State University of New York at New Paltz in 2018 and gave a presentation about his work using additive manufacturing and parametric modeling to create culturally and environmentally conscious work. Rael’s presentation was unlike any previous artist talk I attended. Rael possesses the ability to be engaged in many different areas seamlessly fusing them through a continuous line of thought and action. He combines his political and cultural ideas in the book *Border Wall as Architecture: A Manifesto for the U.S.-Mexico Boundary*. In his other projects and publications, he stresses environmental concerns and ways to combat them. Rael’s work inspired my experimentation in modular design, for an example refer to figure 2 below, this is a 3D printed architectural project called *Bloom*. The University of California at Berkley’s Website defined the project on their website as “Bloom is a nine-foot-tall freestanding tempietto with a footprint that
measures approximately twelve feet by twelve feet and is composed of 840 customized 3D printed blocks. The experimental pavilion represents a new paradigm in building construction methods.”

Figure 6. Bloom, U.C. Berkeley Campus, 2015

Learning about modular parametric design sparked my imagination before I even knew about the tools to fabricate such forms. Immediately I was drawn to the aesthetic as it represented observations of nature and innovative uses of technology.

Ariane Lourie Harrison, an architect and educator, and Seth Harrison, an “entrepreneur in biotech and culture”, are the founders of the Harrison Atelier, an architecture firm based out of Brooklyn, NY. I was attracted to their work for various reasons, the primary factor was their central research question, “How can we build for more than one species?” Their environmental activism pushes them to challenge conventional anthropocentric ideas of architecture.
Harrison Atelier’s “Pollinators Pavilion,” refer to figure 7, is a glorious fusion of algorithmic design, environmental architecture, behavioral entomology and art. The structure modeled after the design of a bee’s compound eyes was the inspiration for the design of a habitat for solitary bees. Solitary bees are responsible for pollinating three-quarters of the non-agricultural environment and they remain almost entirely unknown. The Pollinator Pavilion is not merely a habitat, but also a research facility collecting data using solar-powered monitoring platforms present in each cell, refer to figure 8. The multipurpose function of the structure is an example of a functional sculpture.
As I continue to make art and develop my ideas, I am interested in generating work that functions in the world—providing information, visual excitement, community participation, environmental critique, and adds to the collective knowledge and experience for all people. The artists and artistic initiatives that influence my work continue to broaden my ideas of what is possible. I am privileged to have access through SUNY New Paltz to the tools that are being used by the artists discussed above.

When I began drafting ideas for my final sculpture thesis, I was unfamiliar with digital programs that would allow me to design parametrically. I did some analog experimentation with sculpting small objects of similar shapes in several sizes and casting paper on top of them. The analog process was not entirely futile. However, my need to make rapid iterations with slight variations led me to frustration, so I abandoned the process without yielding many results. Since 2017 I have been using Rhinoceros, a precision 3D modeling program. Until recently, I was vaguely aware of its other capabilities beyond basic modeling.
Early in the thesis project, I wanted the skeleton designed as a slotted sculpture that would enable the artwork to be easily disassembled, reassembled, and flat-packed. Figures 9 and 10 are two examples of these types of slotted frame sculptures designed during this time. Using Rhinoceros, each portion of the structure was designed with a slight variation. Using the Computer Numerical Control (CNC) router, the components were easily cut out of half-inch plywood. The design was initially inspired by classic boat and airplane designs, refer to figure 11.

Fig. 11 Interior of wing, Barber, 1917
Several issues were detected while testing the slotted sculpture designs. Although the slots accommodated the thickness of the plywood, the rounded shapes had a difficult time fitting together at the apex, refer to top of digital rendering in figure 9. Each slotted design was cut from one-eighth ply in the laser cutter to prototype the larger builds. The models were helpful, however, as wood acts differently on a larger scale. The full-size tests proved it the design was unable to function as planned. The aesthetics of the wood did not comply with the exterior paper elements. With this particular project, the plywood was heavy, as well as a challenging material to manipulate. The designing, cutting and testing was a laborious part of the fall 2019 semester, and as deadlines began to creep in, I decided the functionality and aesthetics were not working adequately. After long deliberation, I decided to put this method of construction on the back burner. Afterward, I decided to move forward using steel, applying MIG and TIG welding techniques. As a result, I went back to the drawing board.

The aesthetics and material inspired the method of construction for Shelter. As I frequently use computer aided design tools to assist in the operation, I decided to take the algorithmic thinking away from the computer and apply it to the analog process. After working through some sketches, I had an idea of the structural outcome I desired. I came up with a formula for cutting the quarter inch square steel and applied this method of construction. I began with the foundation of Shelter and cut eight pieces of half inch square steel so the foundation would be a bit heavier, balancing the rest of the sculpture. The first piece was cut at fifteen inches, and each consecutive piece was cut one inch longer. These pieces were then assembled in a spiral configuration. From the base, two rods were welded together at each area of connection (referred to as a node) at approximately a forty-five-degree angle. Each level of the vertical construction, the length of the rods protruding from each node, increased by a half inch. At the vertical halfway point, the rods began to decrease in length by the same factor.
The original design for Shelter was designed to have a snail-like twist to the shape, as seen in figure 12. I took the rounded shape and bisected it to have half of a shell shape, the half pod was designed to be set two feet away from a wall so a single person could slip into the structure by pressing themselves up against the wall and moving horizontally to enter the structure, refer to figure 13. Shelter’s initial design was large enough to contain an interior space for only one person. The structure invites a viewer to enter and fill the interior space with their body. The area functions to provide an interior environment slightly hidden from the outside. Like the gastropods who live in their protective spaces, individuals can feel shielded from the pressures and scrutiny of the exterior world. Allowing themselves the physical, mental and emotional space to be free to experience their present state of mind, whether pleasant or challenging.
The exterior components of the sculpture act like skin covering the skeleton. The “skin” is made using hand-pulled and manipulated abaca paper. The handmade paper was chosen because of its intrinsic ability to achieve a high level of luminosity and can be used to fabricated in modules to construct the facade. The two materials, paper and steel, juxtapose each other in their permanence and durability. The early experimentation showed me what was possible and informed the process.

Paper was an ideal material because it is semi-transparent, light weight, inexpensive, durable depending on the fiber, and has lower ecological impact compared to other materials. The paper creates a screen from which people are shielded from being seen from the opposite side. To cast the paper, I sculpted triangular shapes from sulfur-free oil-based clay. Using this
material gave me the option of casting the shape with brushable silicone or plaster. I ended up using a plaster waste mold method to cast a positive of the scale shape, refer to figure 15.

Figure 15 (a) and 15 (b) are digital renderings of the hand sculpted scale. Using the Structure Sensor device, I was able to make a virtual copy by scanning the plaster cast. This was a part of the experimentation process. I briefly considered the use of digital components in the process; the virtual scale could be printed using plastic PLA or ceramic porcelain, at various sizes depending on what size cast I wanted to make. This experiment was not able to efficiently provide the large-scale shape needed for casting. Incorporating 3D printing methods in a smaller scale production is an option for the future but was not ideal for the scale of this project.

For the exterior of Shelter, I used 30-minute beaten Abaca fibers and an eighteen by twenty-inch mold and deckle to form the sheets of fresh paper for casting. Each sheet was “pulled” and was stretched over the plaster mold for drying. As the fibers began to dry, they tightened over the plaster. Many details were lost as the abaca shrunk pulling away from the interior surfaces of the shape. The fibers took the shape of the mold, as can be seen in figure 16a and 16b. There were several issues with this design. First the corners from the rectangular mold and deckle produced a significant number of waste pieces that needed to be cut off. To cover the welded frame with the modular scale pieces, I needed to produce at least one hundred and fifty-six paper casts. Unfortunately, production was cut short due to studio closure in March 2020 due to the spread of COVID-19.
When the studio access ended in the second week of March, I quickly came to realize there was no way of bringing these large sculptures home with me. Completion was heavily dependent on access to multiple studio spaces in the SUNY Fine Arts Building. After several weeks of trying to find alternative solutions to completing the work, there seemed to be no feasible way to have the sculptures completed by the end of the semester and the numbers of COVID-19 cases were steadily rising. The possibility of returning to the studio looked bleak. In this frustrated state, I turned to the only studio space I had remaining, the virtual space.
Figure 17 (a). Shield, 2020

Figure 17 (b). Shield, 2020
The modeling program *Rhinoceros (Rhino)* is a high precision 3D software that is vector-based. Several plugins enable the user to do various types of modeling within the program; one of the powerful plugins is called *Grasshopper*, a parametric modeling plugin. Parametric modeling is when a design intent is captured using features and constraints, allowing complex structures to take on global changes to a specific definition. For example, if I wanted to change the number of cells that make up a Rubix Cube-like structure, I would not have to adjust each cube. Instead, I can adjust a number setting to increase the cell count. Like *Rhino*, *Grasshopper* is a math-based tool for designing and manipulating complex structures, refer to figure(s) 19. The user interface is designed so each cell, known as a definition, can be visible on the artboard. The information flows from right to left, and as the algorithm is built, the fluid design is visibly highlighted in red in the *Rhino* window, refer to figure 20. *Grasshopper* is math-based and follows rational logic. Below, figure 19 a, b, and c are screen captures of the algorithm used to build *Shelter*.
To construct the pattern that forms the mesh in both Shield and Shelter, I used the Voronoi expression. This mathematical expression is seen in figure(s) 19.

“The partitioning of a plane with points into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other. A Voronoi diagram is sometimes also known as a Dirichlet tessellation. The cells are called Dirichlet regions, Thiessen polytopes, or Voronoi polygons, etc. They were also studied by Voronoi in 1907, who extended the investigation of Voronoi diagrams to higher dimensions. They find widespread applications in areas such as computer graphics, epidemiology, geophysics, and meteorology.”

Each polygon in the Voronoi diagram is referred to as a cell. These cells are made up of edges, which meet at vertices. In order to apply the Voronoi expression to an object, the expression “populate geometry” must be used earlier in the construction. Populating points allow for the Voronoi diagram to draw polygons surrounding the points in a defined area. Once

the geometry has been applied, each edge can be made into a surface that connects to other surfaces at the vertices. The thickness of each edge surface can be adjusted universally to change the density of the mesh.

![Image](image.png)

Figure 21. Laminae tegimen (detail), 2020

Shield, Shelter, and Laminae tegimen (refer to figures 1, 2, 17, 18 and 21) used the Voronoi expressions to create the mesh. *Shield* was constructed using the point attractor expression. A circular shape was drawn over the point cluster, and the attractor expression was applied to the shape. The points were then concentrated around the circular shapes creating a higher density in specified areas along a vector. The circular shapes are visible in each layer of the structure. The populate geometry expression was applied to the curved surface after the Voronoi expression was able to draw the polygons around each point to create the mesh surface seen in *Shelter*.

The final works, as seen in figures 18 and 22, were significantly different compared to the sketched proposals, partially completed first edition and digital renderings. In the end the final pieces exhibited at the Samuel Dorsky Museum of Art were products of the situation and
environment in which they were made. The evolution of the work was drastically impacted by factors outside of the educational and critique space.

In the fall of 2019, the initial experiments with making paper helped inform my use of paper as I redesigned my thesis project. I was able to apply what I had learned earlier, to my home studio practice. I made paper using similar methods, but on a much smaller scale. I incorporated a great deal of experimentation with different fibers that previously I did not consider. I made paper using, abaca, jute, flax, cotton, coffee grounds and Thai Kozo. Working smaller meant I could do more iterations, while not sacrificing time or materials. In the end, I primarily chose sheets containing cotton and abaca fibers for Shield because of the quality of cuts produced by the laser cutter and the variation in weight and luminosity. Laminae tegimen, however, would not work with the small-scale sheets I was making. I could not produce two foot by two-foot sheets in my home studio. I refused to scale down Shelter any further for fear of losing the interactive element. I used Tosa-washi made in a historic papermaking town on the island of Shikoku in Japan. While visiting the papermaking town of Ino-cho, I purchased several types of locally made paper. Early in my graduate school career, it was these papers that inspired me to factor the translucence of my materials and consider light as part of the work. I used these papers in a variety of studio projects because of their durability and pellucidity. The Kozo Tosa-washi allowed me to retain the scale I desired and connected to my earlier inspiration to this material.

As stated earlier in this paper, I am interested in my work “functioning.” I desired the viewers to have an interactive and kinesthetic experience upon entering the gallery. As I observed visitors approach my installation in the north west section of the Samuel Dorsky Museum’s Chandler Gallery, where shield and shelter were installed, most people began by standing back from the wall hanging pieces. Next, they stepped in, craning their necks and squinting their eyes, slowly they crouched below the hanging papers, then pressed themselves up to the wall to get a peek from the side. Many people wanted to know what was hidden behind the other layers. Slowly they moved over and read my artist statement, refer to the show statement attached below. After reading, they would turn around and walk around the freestanding cube. Here is where I became very excited. Visitors would circle it, crouching and
peering through different holes, taking pictures between the layers and many would stand on their tiptoes to get a better view from above. Although small, the average viewer found ways to place themselves within the miniature environment. I wanted people to walk through each layer, experiencing the shifting planes with their body, but what ended up happening was equally satisfying for me. People engaged their bodies on the exterior of the cube form and engaged their eyes and minds with the interior.

I look forward to future projects growing out of this exciting and expanding body of work. Living through a global pandemic has changed the world as we know it and the lives of every
individual. During this year, my questions regarding the need for protective spaces have become increasingly more relevant. As this project continues to evolve, I look forward to expanding on my original questions and encountering new and deeper answers.
Bibliography

“SAITAMA CRAFT CENTER.” 一般財団法人 埼玉伝統工芸協会 埼玉伝統工芸会館, www.saitamacraft.com/hosokawashi_e.html.

Rosa Loveszy

Education
State University of New York at New Paltz
Spring 2019 MFA in Painting and Drawing
Spring 2020 MFA Sculpture
Arcadia University
Spring 2016 BA in Scientific Illustration

Teaching and Artistic Engagement
Spring 2019 Teaching Assistant for the Undergraduate Introduction to Sculpture
Fall 2018 Graduate Assistant at the Samuel Dorsky Museum of Art
Fall 2018 Instructor of Record for the Introduction to Foundation Arts
Summer 2016 - Spring 2018 Teacher and Artistic Programming Coordinator for Music Therapy Services of New York and Family Unity International
Summer 2015 Archaeology Lab Technical Drawing Supervisor at the Center for Mediterranean Studies, Sicily
Fall 2013 - 2016 Costume Shop Technician at Arcadia University’s Theater Production Department

Exhibitions
Spring - Summer 2018 Curatorial Team for What’s Next? An Outdoor Sculpture Show at Unison Arts Center, New Paltz, NY
Fall 2017 Collaborative sculpture creation and install at the Philadelphia Flower Show for the Hudson Valley Seed Company, Philadelphia, PA
Spring 2017 Intersections of Science and Art, Callahan Gallery - Solo Show, Brooklyn, NY
Fall 2016 Abstractions in the Natural World, Keswick House Gallery - Solo Show Keswick, PA
Spring 2016 Something to Die For, Spruance Gallery, Arcadia University - Group Show, Glenside PA
Spring 2016 Technical drawings and illustrations in Taking Maltese Prehistory Out of the Box: The Site of Borg in-Nadur and its Mediterranean Context, Catania, Sicily
Summer 2013 Technical Artist for the inhouse catalogue of artifacts, Segovia, Spain
Summer 2012 Mural Artist for Whole Foods Market and the Andaz Hotel, NYC

Skills
Software
Hardware
MIG Welding, TIG Welding, Oxyacetylene welding, plasma cutter, CNC router, band saw, table saw, drill press
Processes
Casting, mold making, flat patterning for garments, sewing, designing objects for 3D printed fabrication, art handling, framing
Rosa Loveszy
Thesis Installation Instructions
November 2020

Shield (pedestal/floor)

1. Gently remove paper sheets from packaging and find a clean flat surface to allow papers to flatten before installation.
 - Please make sure the news print layer is on bottom to keep papers clean

2. Place weights on each corner of papers to help flatten, allow it to rest for 30 minutes.
 - Refer to figure 2

3. Place metal cube in desired position prior to installing papers.

4. Install paper sheets one at a time from A - E, follow corresponding labels.
 - Refer to figure 3

5. Place papers 5.9” apart starting with paper sheet labeled A.

6. When positioning the magnets curve the papers slightly and place magnet on top.
 - Refer to figure 4 (top corner) and 5 (bottom corner)
 - Make sure papers are taught so there is no slumping in the middle
Rosa Loveszy
Thesis Installation Instructions
November 2020

Shield (wall)

1. Place command strips in designated areas on back of bracket (if not already adhered).

2. Remove sticker backing.
 - Place on wall at designated height
 - Left Bracket height at 69” from the top to floor
 - Right Bracket height at 60” from the top to floor
 - Brackets left and right set 3” apart
 - Brackets must be leveled parallel to the floor

3. Press back of bracket for 30-45 seconds.
 - Allow bracket to rest for 10 - 15 minutes before attaching magnets and paper

4. Remove papers from folders corresponding to labeled brackets Left and Right.

5. Paper sheet orientation begins at the back of the bracket with sheet A and moving toward front.
 - For positioning, follow images in document and labels on brackets

6. Use one magnet on each corner unless otherwise specified.

7. When placing magnets under brackets gently curve paper and place magnets on top.
 - Refer to image below
Magnet Specifications

Left Bracket

1. Sheet D of Left Bracket takes 4 magnets stacked as seen in figure 1.
2. Sheet E is placed with magnets hanging from sheet D.
 • Refer to figure 2

Right Bracket

3. Sheet D takes 2 magnets on top of bracket lip.
4. Sheet E requires 3 magnets on top of bracket lip.
5. Sheet F is placed with magnets hanging from sheet E.
 • Refer to figure 3