Objectives

- Understand and model the AIMD algorithm utilizing MathWorks® MATLAB
- Determine the effects of varying:
 - The additive increase parameter
 - The multiplicative decrease parameter
 - The number of users
 - Network capacity

AIMD in Action

Assume that two users are sharing a network. The first user starts at 30% of the optimal network capacity and the second user starts at 60% of the optimal capacity. Since their sum of 90% is below the optimal network capacity of 100%, a constant amount \(a \) is added to the users’ transmission rates (additive increase). As a result, the users’ shared throughput is now greater than the optimal network bandwidth. Therefore the users’ transmission rates are reduced by a multiplicative factor \(b \) (multiplicative decrease), returning the shared throughput below the optimal network bandwidth. In the next iteration, transmission rates will be increased by \(a \), and so on.

![AIMD in Action](image1.png)

This setup was modeled in MATLAB, outputting both graphical and numerical results.

Results

Code was written in MATLAB to do the following:

- Simulate AIMD on a 2-user network with graphical and numerical results
- Create a table showing any desired range of parameters and resulting network performance
- Simulate AIMD and give performance statistics with an unlimited number of users

Case Study

An experiment was run in order to examine the effects of changing parameters \(a \) and \(b \) following a sudden increase in network traffic.

- Control group: Users did not change \(a \) and \(b \) in response to increase in network traffic.
- Experimental groups: Users responded to increase in traffic by changing \(a \) and \(b \).
- 15 iterations of increase/decrease in transmission rates were observed.
- Initially there were 4 users on the network, with initial additive increase factor \(a = 35 \) and initial multiplicative decrease factor \(b = 0.5 \).
- After 5 iterations, the number of users was increased to 7, and thus the load on the network suddenly increased.

The following results were observed:

- Time \(t \) for the users to converge toward an equally shared load
- Smoothness \(s \) of the oscillations, indicative of efficiency

Results of the Control Group and eight Experimental Groups:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exp. 1</th>
<th>Exp. 2</th>
<th>Exp. 3</th>
<th>Exp. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>(b)</td>
<td>0.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>(x_{init})</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

For Further Information

Please e-mail or visit one of the links below:
- johnmorgangay.14@sunymaritime.edu
- surabhimah.14@sunymaritime.edu
- andrewwhi.15@sunymaritime.edu

Acknowledgements

Math 610: Projects in Applied Mathematics

Analysis of the “Additive Increase Multiplicative Decrease” Model for Congestion Avoidance

John Gaylan, Surabhi Maheshwari, Andrew Whitener

Advisor: Dr. Debbie Yuster Industrial Liaison: Joseph Naegle