Understanding the structural basis of small molecule inhibitors of *M. tuberculosis* DosS

Raviya Careem, Eaindra Yee, Murphi Williams and Dr. Ambika Bhagi-Damodaran
State University of New York at Oswego, Dept. of Chemistry, University of Minnesota, Twin Cities

Background

- **Tuberculosis** (TB) is an infectious airborne disease caused by *Mycobacterium tuberculosis*, that becomes dormant under hypoxia.
- Therapeutics have proven to be ineffective when treating dormant TB.
- The DosS/DosR regulatory system is responsible for the upregulation of the dormancy genes.
- The regulatory system can be inhibited by introducing small molecule inhibitors that bind to the GAF-A domain of the DosS sensor.

Expression and purification of wild-type GAF-A domain

- Protein was purified using immobilized metal affinity chromatography (IMAC).
- The eluted protein was reacted with TEV protease to cleave off His-Tag. The sample was then purified again to separate His-Tag from cleaved GAF-A protein.

Crystallization of GAF-A to prepare seed stock

- Purified GAF-A protein was crystallized using the hanging drop crystallization method.
- GAF-A crystals obtained were used to create a seed stock to aid in crystallizing inhibitor-bound GAF-A.

Crystallization of inhibitor-bound GAF-A

- Two inhibitors synthesized by the Bhagi-Damodaran lab were tested out.
- Inhibitor was added to GAF-A and incubated; the absorbance was measured periodically to monitor the shift in Soret peak and determine whether the inhibitor was bound to the protein.
- Once the inhibitor was bound, crystal trays for the inhibitor-bound protein were set using prepared seed stock. Crystal trays were observed over a period of 3 weeks.

Methodology

Expression and purification of wild-type GAF-A domain

- SDS-PAGE was used to analyze purity of protein and to determine whether TEV reaction was successful.

Crystallization of GAF-A to prepare seed stock

- SDS-PAGE analysis of TEV protease cleavage efficiency. Expected mass difference of 2 kDa was approximately seen.

Results

Expression and purification of wild-type GAF-A domain

Crystallization of inhibitor-bound GAF-A

- Obtained inhibitor-bound crystals will be sent to a synchrotron and diffracted in order to determine the overall protein structure. We are looking to see how the inhibitor binds to GAF-A and affects the overall protein structure.

Acknowledgements

This project was funded by the LANDO NSF/REU program and the University of Minnesota. Special thanks to Eaindra and Murphi from the Bhagi-Damodaran lab and my institution State University of New York at Oswego.