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Newton’s law of cooling is a staple of the Calculus curriculum; it is usually

presented as a first or second example of a separable differential equation.

In that context, the law states that the rate of change of the temperature T

of, say, a quantity of fluid is proportional to the difference between the

fluid’s temperature and the ambient temperature T∞:

dT

dt
= −k(T − T∞). (1)

This is easily solved (part of the difficulty in solving it is dealing with initial

conditions):

T (t) = T∞ + (T0 − T∞)e−kt (2)

where T0 := T (0) is the temperature at time t = 0.

The following problem is, for many students, a challenging application of

Newton’s law even given the formula (2).

Problem. Which results in a cooler drink:

1) Pour a cup of coffee, wait five minutes, and then add an ounce of cold

milk or

2) Pour a cup of coffee, add an ounce of cold milk, and then wait five

minutes?

One challenging aspect of this problem is that a law for the temperature of

mixed fluids must be either known a priori or else invented during the

solution of the problem. We shall give it. If we mix two fluids (that are

thermodynamically “similar”) then the temperature of the mixed fluid is

the average of the temperatures but weighted according to quantity. For

example 3 oz. of water at 100 degrees mixed with 2 oz. of water at 150
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degrees results in 5 oz. of water at (3 · 100 + 2 · 150)/5 = 120 degrees. In

general,

Principle A. If QA units of fluid at temperature TA is mixed with QB

units of fluid at temperature TB, then the resulting mix has temperature

T :=
TAQA + TBQB

QA + QB

. (3)

We will now solve the problem in two ways, one via Newton’s law, the other

through intuition.

Solution 1. Let Tc and Tm denote the initial temperatures of the coffee

and milk respectively. Let’s assume that a cup of coffee is the ‘standard’ 6

oz. though, as it turns out, this assumption will not affect the answer to

the question.

In case 1, after 5 minutes of cooling, equation (2) predicts that the

temperature of the coffee is

T (5) = T∞ + (Tc − T∞)e−5k (4)

and, after mixing with milk, equation (3) predicts a final temperature of

(6T (5) + Tm)/7 or

T1 :=
1

7
(6T∞ + Tm) +

6

7
(Tc − T∞)e−5k. (5)

In case 2, mixing the coffee and milk yields 7 oz. of fluid at initial

temperature (6Tc + Tm)/7 which, after cooling for 5 minutes, has

temperature

T2 := T∞ +
1

7
(6Tc + Tm − 7T∞)e−5k. (6)

Taking the difference and simplifying, we find

T2 − T1 =
1

7
(1− e−5k)(T∞ − Tm). (7)
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Hence, assuming that “cold” means colder than the ambient temperature

T∞, Case 1 yields a cooler drink. QED

Note that equation (7) implies that the difference of temperature in Case 1

and Case 2 is independent of the temperature of the coffee. It is, rather, the

relative amount of milk that makes the difference. That is, the 7 in

equation (7) comes from the ratio 1:6 of milk to coffee. We would replace

the 7 by 9 if we used an 8 oz. cup of coffee.

Consider now an ‘intuitive’ solution:

Solution 2. Suppose we take 1 oz. of milk and allow it to warm up for 5

minutes while simultaneously allowing 6 oz. of coffee to cool. Then we mix

them. Since it makes no difference if the fluids were already mixed or not,

the temperature of the 7 oz. mix is the same as T2. This is clearly warmer

than if we do not allow the milk to warm up; that is, we keep it in the

fridge until we mix it which is Case 1. Hence T1 < T2.

Although solution 2 is short and elegant, it lacks the rigor of solution 1

(especially in the phrase “since it makes no difference if the fluids are mixed

or not”). It is not our goal to show the correctness of either method (not

least because it is difficult to justify Newton’s law or its assumptions

thermodynamically) but rather to show that the two solutions are equally

correct!

Theorem. Not only does Newton’s law imply that “it makes no difference

if the fluids are mixed or not” but also, if there is any law of cooling for

which it “makes no difference if the fluids are mixed or not”, then it must

be Newton’s Law.

We shall henceforth assume that there is some law of cooling. What we

mean by that is that given an ambient temperature T∞ and an object (e.g.,

a quantity of fluid), the future temperature of the object depends only on
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its present temperature and the elapsed time. Furthermore, we shall insist

it is reasonable that temperature changes monotonically and continuously,

converging at ∞ to T∞. A mathematical way of saying all this is that there

exists some monotonic and continuous function f with limit T∞ at ∞ such

that

If T (0) = f(t0) then, for all t, T (t) = f(t0 + t). (8)

Select any two temperatures T1 > T2 > T∞. Also let us identify the unique

choices t1 and t2 for which T1 = f(t1) and T2 = f(t2). Finally, let

r = (T2 − T∞)/(T1 − T∞). Upon clearing the denominator, we observe that

(1− r)T∞ + rT1 = T2. Let us envision mixing two quantities of fluid, an

amount r of temperature T1 with a quantity 1− r at room temperature T∞.

If we mix first, we get rT1 + (1− r)T∞ = T2 = f(t2), and then allowing the

fluid to cool for a time period t, gives f(t2 + t). But waiting first gives an

amount r of f(t1 + t) to be mixed with an amount 1− r of T∞ yielding

rf(t1 + t) + (1− r)T∞. If mixing does not matter, these must be equal so

rf(t1 + t) + (1− r)T∞ = f(t2 + t).

This can be rewritten:

f(t2 + t)− T∞ = r(f(t1 + t)− T∞). (9)

Subtract T2 − T∞ = r(T1 − T∞), and divide by t to get

f(t2 + t)− T2

t
= r

f(t1 + t)− T1

t
.

Assuming that f is differentiable, we may take the limit as t → 0 to find

f ′(t2) = rf ′(t1). (10)

Now set t = 0 in (9) and divide equation (10) by these equal quantities to

get
f ′(t2)

f(t2)− T∞
=

f ′(t1)
f(t1)− T∞

.
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Since this holds for any time t2 > t1, the fractions must have a constant

value, say −k,
f ′(t2)

f(t2)− T∞
= −k.

Upon integrating and exponentiating, we have

ln(f(t1 + t)− T∞) = −kt + c

f(t1 + t) = T∞ + Ce−kt

T (t) = f(t1 + t) = T∞ + (T1 − T∞)e−kt.

We have in fact derived Newton’s Law of Cooling. However in this

approach we assumed, quite reasonably, that f is differentiable. We can

avoid this assumption and succeed using the weaker assumption that f is

continuous by using the technique of functional equations, a topic seldom

seen in the undergraduate curriculum. To use this approach, set s = t2 − t1

in equation (9) and divide by the same equation with t replaced by 0 to get

f(t1 + s + t)− T∞
f(t1 + s)− T∞

=
f(t1 + t)− T∞

f(t1)− T∞
.

Next multiply both sides by

f(t1 + s)− T∞
f(t1)− T∞

to give us

f(t1 + s + t)− T∞
f(t1)− T∞

=
f(t1 + s)− T∞

f(t1)− T∞
· f(t1 + t)− T∞

f(t1)− T∞
.

This suggests that we can define a new function

g(t) := (f(t1 + t)− T∞)/(f(t1)− T∞) for t ≥ 0 to reveal the functional

equation

g(s + t) = g(s)g(t), g(0) = 1. (11)

This equation is (one of several) known as Cauchy’s equation (see [1]) and,

assuming only the continuity of g(x) it turns out that there exists a real

number k such that

g(t) = e−kt. (12)

5



This is remarkable, since infinite differentiability then follows from the

much weaker condition of continuity (in fact, it follows from the even

weaker condition of boundedness on an interval and continuity at a single

point! – see [1] for details). We sketch a proof assuming continuity for all x.

As a first consequence, we can choose c 6= 0 with g(c) > 0. By induction

and equation (11),

g(nc) = g(c)n.

Since g(c) = g(n(c/n)) = g(c/n)n, taking the nth root of both sides,

g(c/n) = g(c)1/n.

Then g(mc/n) = g(c/n)m = g(c)m/n and so, for every positive rational x,

g(xc) = g(c)x. (13)

Since g(−xc)g(xc) = g(−xc + xc) = g(0) = 1, equation (13) holds for all

rational numbers x. By the continuity of g, the two functions on either side

of equation (13) are defined and continuous for each real number x and

agree on the dense set of rational numbers, and so equation (13) holds for

all x. Since there is some k such that g(c) = e−kc, we may rewrite (13) as

equation (12).

To apply this to the previous problem, recall that

g(t) := (f(t1 + t)− T∞)/(f(t1)− T∞) satisfies equation (11). Using its

solution (12), and the definition T (t) := f(t1 + t), we may write

T (t) = T∞ + (T (0)− T∞)e−kt

for some k – Newton’s Law!

Going the other way, assume Newton’s law (2). Then two similar fluids at

temperatures a and b respectively satisfy temperature laws

{
T1(t) = T∞ + (a− T∞)e−kt

T2(t) = T∞ + (b− T∞)e−kt
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respectively. If mixed in the proportion r : (1− r), the resulting fluid has

temperature law:

T (t) := T∞ + (ra + (1− r)b− T∞)e−kt = rT1(t) + (1− r)T2(t)

which shows that mixing does not matter. QED

Equation (2) can also reasonably be called “Newton’s law of heating” when

T (0) < T∞. The extension to that case follows from Principle A and that

mixing does not matter: if a fluid at initial temperature T1(0) = T∞ + c and

another at temperature T2(0) = T∞ − c are mixed in equal proportions,

then the mixed temperature is constant T∞. Since the first fluid obeys

Newton’s law (T1(t) = T∞ + ce−kt) and since mixing does not matter,

T2(t) = T∞ − ce−kt. Since c = T∞ − T2(0),

T2(t) = T∞ + (T2(0)− T∞)e−kt.

We have purposely not addressed many of the assumptions necessary for

Newton’s law to give even a reasonable approximation to reality. That

which makes Newton’s law of cooling interesting (to Calculus teachers at

least) is its simplicity and, as we tried to show, its inevitability given a few

basic principles and a little knowledge of the Calculus or of functional

equations.

What then was Newton’s intuition? In his paper of 1701, written in Latin,

no equations appear. He wrote, however ( this quoted from [2]): “the iron

was laid not in a calm air, but in a wind that blew uniformly upon it... for

thus equal parts of air were heated in equal times, and received a degree of

heat proportional to the heat of the iron”. The results of this experiment in

‘forced convection’ led to the empirical law equivalent to (1) and (2). We

recommend the paper [2] and its references for further information.
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