VALIDATING VISUAL EYE TRACKING TECHNOLOGY TO ASSESS ACCOMMODATIVE TECHNOLOGY FOR STUDENTS WITH DISABILITIES IN UNDERGRADUATE EDUCATION

PRESENTERS: Rui Frietas¹, Sharon M. Thomas², Anders Chan¹, Sabrina Colomone¹, Stephanie P. Bailey¹, Ravi L. Ramdari¹, Katherine McCabe¹, Nicole Albanese², & Harnoor Singh³

MENTORS: Lillian Park, Ph.D.¹,⁴, B. Runi Mukherji, Ph.D.¹,⁴, Lorenz S. Neuwirth, Ph.D.¹,⁴, & Stacey DeFelice⁵

SUNY Old Westbury Department of Psychology¹, SUNY Old Westbury Department of Biology², Herricks High School, Science Research Program³, SUNY Old Westbury Neuroscience Research Institute⁴, SUNY Old Westbury Office of Services for Students with Disabilities⁵
INTRODUCTION

- The National Center for Education Statistics (NCES) data from 2011-2012, reported that 11% of undergraduate students are identified as having a disability.

- Nearly, 38% of students with disabilities are enrolled in 2-year as compared to 9.8% at 4-year institutions.

- Students with disabilities require support services, some of which are accommodative technologies.

- Chan et al., (2017) showed that eye tracking technology is sensitive enough to pick up gender differences related to accuracy and response latency in a simple Flanker Task. They also showed that this technology is sensitive to pick up differences between visual tracking behaviors in individuals with and without disabilities.
5 MAIN CATEGORIES DESCRIBING STUDENTS WITH DISABILITIES

- Learning Disabilities (LD)
- Emotional or Psychiatric Conditions (EPC)
- Orthopedic or Mobility Impairments (EMI)
- Attention Deficit/Hyperactivity Disorder (AD/HD)
- Health Impairments (HI)
Little data exists on whether or not such technologies are sensitive to accommodating individual needs, that is tailored to support people with a specific or having multiple disabilities.

The literature lacks studies:
- 1) investigating the cognitive processing in people with multiple disabilities
- 2) whether technologies given to these students are beneficial
- 3) what are the educational outcomes in using such technologies

The aim of the study was to determine whether assessing students’ visual processing abilities (i.e., eye gaze) through a 10-minute Flanker Task could be used as a predictive diagnostic tool to screen students with disabilities based on the type of disability from the 5 main categories described earlier.
HYPOTHESES

We hypothesized the following:

- **Null Hypothesis # 1:**
 \[H_0 = \text{That eye gaze could not detect attentional differences based on the type of disability between a triple blinded Non-OSSD and OSSD student population.} \]

Alternative Hypothesis # 1:
\[H_1 = \text{That eye gaze could detect attentional differences based on the type of disability between a triple blinded Non-OSSD and OSSD student population.} \]

- **Null Hypothesis # 2:**
 \[H_0 = \text{That eye gaze could not be used as a predictive diagnostic tool to screen students with disabilities.} \]

Alternative Hypothesis # 2:
\[H_1 = \text{That eye gaze could be used as a predictive diagnostic tool to screen students with disabilities.} \]
METHOD: SAMPLE POPULATION

- IRB Approval was granted from SUNY-Old Westbury to conduct the study.

- Students from SUNY Old Westbury were randomly sampled by convenience.

- **Experiment 1: Assessed the sensitivity of Eye Gaze between students with and without disabilities**
 - Males \(N = 6 \) (i.e., Non-OSSD \(n = 4 \) & OSSD \(n = 2 \))
 - Females \(N = 34 \) (i.e., Non-OSSD \(n = 26 \) & OSSD \(n = 8 \))

- **Experiment 2: Assessed the sensitivity of Eye Gaze between students with different types of disabilities regardless of gender**
 - Non-OSSD \((n = 107) \)
 - Undefined \((n = 9) \)
 - ADD/ADHD \((n = 3) \)
 - Learning/Processing Disorder \((n = 3) \)
 - Emotional/Psychiatric Disorder \((n = 1) \)
 - Occupation/Motor Impairment \((n = 2) \)
 - Neurological/Health Impairment \((n = 3) \)
 - Multiple Disabilities \((n = 2) \)
Students were presented with outer arrows that were congruent (i.e., arrows facing the same direction) and flanked the middle arrow

- Or Incongruent (i.e., arrows facing in the opposite direction)

Participants were given 12 practice trials before starting the experiment to familiarize themselves with what was expected.

The test presented 50 trials (i.e., 10 trials of control, left congruent, left incongruent, right congruent, and right incongruent arrows) randomly within a 10-minute time period.

Participants % accuracy and reaction time (RT measured in microseconds) were recorded to infer cognitive attentional processing.
EYE TRACKING EXPERIMENTAL METHODS: GAZEPOINT UX-EDITION

Visual Flaker Task Stimuli

Eye Tracking Heat Map

Superimposed Over Test Stimuli
DATA ANALYSIS:

- Data were analyzed using an ANOVA with a level of significance set at $\alpha = 0.05$ and a 95% confidence interval. Data are presented as \pm SEM.

- **Experiment # 1:** evaluated the effects of Gender, Student Group, and Flanker Test Condition and the interaction between Gender X Student Group X Flanker Test Condition.

- **Experiment # 2:** evaluated the differences in the participants learning curve for the Flanker Task as an effect of Student Group/OSSD Condition and Flanker Task Test Condition.
EXPERIMENT #1 RESULTS:

![Graphs showing accuracy and reaction time differences between Non-OSSD and OSSD groups in Flanker Test Conditions for Males.]

Fig. 5. Male Non-OSSD vs. OSSD accuracy differences. The data revealed a significant effect of Group $F_{(1)} = 122.909, \ p = 0.001$, but no significant effect of Condition $F_{(3)} = 1.805, \ p = 0.187$, nor a significant Group X Condition interaction $F_{(1,3)} = 1.805, \ p = 0.187$.

Fig. 6. Male Non-OSSD vs. OSSD RT differences. The data revealed no significant effect of Group $F_{(1)} = 4.142, \ p = 0.059$, Condition $F_{(3)} = 0.092, \ p = 0.964$, nor a significant Group X Condition interaction $F_{(1,3)} = 0.074, \ p = 0.973$.
EXPERIMENT #1 RESULTS (CONTINUED):

Fig. 7. Female Non-OSSD vs. OSSD accuracy differences. The data revealed a significant effect of Group $F_{(1)} = 84.145$, $p = 0.001$ and Condition $F_{(3)} = 2.647$, $p = 0.052$, but no significant Group X Condition interaction $F_{(1,3)} = 0.774$, $p = 0.511$

Fig. 8. Female Non-OSSD vs. OSSD RT differences. The data revealed a significant effect of Group $F_{(1)} = 6.765$, $p = 0.010$, but no significant effect of Condition $F_{(3)} = 0.077$, $p = 0.972$, nor a significant Group X Condition interaction $F_{(1,3)} = 0.219$, $p = 0.883$
EXPERIMENT 2:

- Data were broken down by left congruent, left incongruent, right congruent, and right incongruent stimuli for the Flanker Task Test Conditions.

- Each Flanker Task Test Condition was pseudo-randomly organized to show the learning curve over the course of the experiment to assess sensitivities of each Student Group/OSSD Condition in exhibiting differences in learning the task.
Left Congruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

- Non-OSSD
- Occupational/Physical Motor Impairment

Left Incongruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

- Non-OSSD
- Occupational/Physical Motor Impairment

Right Congruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

- Non-OSSD
- Occupational/Physical Motor Impairment

Right Incongruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

- Non-OSSD
- Occupational/Physical Motor Impairment
Left Congruent: Student Sensitivity Comparisons

Right Congruent: Student Sensitivity Comparisons

Left Incongruent: Student Sensitivity Comparisons

Right Incongruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

Non-OSSD Learning/Processing Disorder

Non-OSSD Learning/Processing Disorder
Left Congruent: Student Sensitivity Comparisons

Right Congruent: Student Sensitivity Comparisons

Left Incongruent: Student Sensitivity Comparisons

Right Incongruent: Student Sensitivity Comparisons

Average Reaction Time (RT)

Pseudo-Randomized Trials

Non-OSSD Neurological Health Impairment

Average Reaction Time (RT)

Pseudo-Randomized Trials

Non-OSSD Neurological Health Impairment

Average Reaction Time (RT)

Pseudo-Randomized Trials

Non-OSSD Neurological Health Impairment
Left Congruent: Student Sensitivity Comparisons

Right Congruent: Student Sensitivity Comparisons

Left Incongruent: Student Sensitivity Comparisons

Right Incongruent: Student Sensitivity Comparisons

Average Reaction Time (RT) (Measured in seconds)

Pseudo-Randomized Trials

Non-OSSD ADD/HD

Non-OSSD ADD/HD
Left Congruent: Student Sensitivity Comparisons

Non-OSSD
Emotional or Psychiatric Condition

Left Incongruent: Student Sensitivity Comparisons

Non-OSSD
Emotional or Psychiatric Condition

Right Congruent: Student Sensitivity Comparisons

Non-OSSD
Emotional or Psychiatric Condition

Right Incongruent: Student Sensitivity Comparisons

Non-OSSD
Emotional or Psychiatric Condition
Our experimental methods employing Eye Gaze Technology was sensitive in detecting attentional differences in participants who were grouped after following a triple blind procedure when testing for Non-OSSD vs. OSSD students. Results showed that both genders exhibited reduced accuracy, but there were no noticeable differences in RT regardless of disability.

- We reject the Null Hypothesis, and accept the Alternative Hypothesis that eye gaze technology could detect attentional differences between a Non-OSSD and a OSSD students visual attention.

Additionally, our experimental methods employing Eye Gaze Technology was sensitive in detecting attentional differences in participants who were grouped after following a triple blind procedure with OSSD student groups (i.e., learning processing, ADD/ADHD, etc.). Results showed that students with learning processing, ADD/ADHD, neurological, and emotional psychiatric disorders show differences in learning the Flanker Task as evidenced by the learning curves.

- We reject the Null Hypothesis, and accept the Alternative Hypothesis that eye gaze technology could not detect attentional differences between a triple blinded OSSD student groups.
Conclusion & Limitations:

- Our study indicates through a simple Flanker Task, our methods are sensitive enough to detect changes between Non-OSSD and OSSD students.

- Eye Gaze Technology is sensitive enough to detect accuracy and reaction time changes in real time of individuals with disabilities, even while being triple blinded to the participants.

- Our study is limited due to small sample sizes within OSSD student populations. However, our preliminary data show that OSSD-students visual processing issues can be assessed with a 10-minute Flanker Task.

Future Outlooks:

- We are now increasing our triple blinded sample size to further assess the subtype of OSSD student disabilities (i.e., LD, EPC, EMI, AD/HD, HI) to determine which populations would benefit most from visual accommodative software/technology to support their education.

- Future analysis of OSSD student attentional differences will help us to develop an evidenced-based approach to determine which visual aid and/or accommodative technologies match our OSSD students needs.

- Such databased/evidenced-based supports will help our OSSD department advocate for an increased budget for accommodative resources that match student needs and, in turn, will promote academic achievement for OSSD student in college.
REFERENCES:

ACKNOWLEDGEMENTS

- All SUNY Old Westbury Undergraduate Student Participants

- Drs. Lillian Park, B. Runi Mukherji, & Lorenz S. Neuwirth
 - Department of Psychology & SUNY Neuroscience Research Institute

- Stacey DeFelice,
 - SUNY Old Westbury Office of Services for Students with Disabilities

- Research Funding/Support:
 - SUNY Faculty Development Grants awarded to Drs. Park, Mukherji, & Neuwirth