SOAR Home

Welcome to the SUNY Open Access Repository

The SUNY Open Access Repository (SOAR) is a centrally managed online digital repository that stores, indexes, and makes available scholarly and creative works of SUNY faculty, students, and staff across SUNY campuses. SOAR serves as an open access platform for those SUNY campuses that do not have their own open access repository environments. 

Access to SUNY campus communities in SOAR are available below under SUNY sectors and also listed alphabetically under the Campus Communities in SOAR on the navigation bar on the left.

Additional information includes

Select a community to browse its collections.

Doctoral Degree Granting Institutions
University Colleges
Technology Colleges
Community Colleges
  • Variants in nicotinic receptors and risk for nicotine dependence.

    Bierut, Laura Jean; Stitzel, Jerry A; Wang, Jen C; Hinrichs, Anthony L; Grucza, Richard A; Xuei, Xiaoling; Saccone, Nancy L; Saccone, Scott F; Bertelsen, Sarah; Fox, Louis; et al. (2008-06-02)
    A recent study provisionally identified numerous genetic variants as risk factors for the transition from smoking to the development of nicotine dependence, including an amino acid change in the alpha5 nicotinic cholinergic receptor (CHRNA5). The purpose of this study was to replicate these findings in an independent data set and more thoroughly investigate the role of genetic variation in the cluster of physically linked nicotinic receptors, CHRNA5-CHRNA3-CHRNB4, and the risk of smoking.
  • Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample.

    Agrawal, Arpana; Hinrichs, Anthony L; Dunn, Gerald; Bertelsen, Sarah; Dick, Danielle M; Saccone, Scott F; Saccone, Nancy L; Grucza, Richard A; Wang, Jen C; Cloninger, C Robert; et al. (2007-10-17)
    Dependence on alcohol and illicit drugs frequently co-occur. Results from a number of twin studies suggest that heritable influences on alcohol dependence and drug dependence may substantially overlap. Using large, genetically informative pedigrees from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed quantitative linkage analyses using a panel of 1717 SNPs. Genome-wide linkage analyses were conducted for quantitative measures of DSM-IV alcohol dependence criteria, cannabis dependence criteria and dependence criteria across any illicit drug (including cannabis) individually and in combination as an average score across alcohol and illicit drug dependence criteria. For alcohol dependence, LOD scores exceeding 2.0 were noted on chromosome 1 (2.0 at 213 cM), 2 (3.4 at 234 cM) and 10 (3.7 at 60 cM). For cannabis dependence, a maximum LOD of 1.9 was noted at 95 cM on chromosome 14. For any illicit drug dependence, LODs of 2.0 and 2.4 were observed on chromosome 10 (116 cM) and 13 (64 cM) respectively. Finally, the combined alcohol and/or drug dependence symptoms yielded LODs >2.0 on chromosome 2 (3.2, 234 cM), 10 (2.4 and 2.6 at 60 cM and 116 cM) and 13 (2.1 at 64 cM). These regions may harbor genes that contribute to the biological basis of alcohol and drug dependence.
  • Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes.

    Rangaswamy, Madhavi; Porjesz, Bernice (2008-06-24)
    Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.
  • From event-related potential to oscillations: genetic diathesis in brain (dys)function and alcohol dependence.

    Rangaswamy, Madhavi; Porjesz, Bernice
    Recording the brain's electrical activity using electrodes placed on the individual's scalp provides noninvasive sensitive measures of brain function in humans. Regardless of whether an individual receives sensory information or performs higher cognitive processes, the brain regions involved exhibit measurable electrical activity, and by recording this activity with numerous electrodes placed on different areas of the scalp, researchers can determine when and where in the brain information processing occurs. Two general approaches can be used to record these neuroelectric phenomena: The continuous electroencephalogram (EEG) records brain activity when the subject is at rest and not involved in a task. It reflects the sum of the random activity of thousands of neurons that have similar spatial orientation in the brain. This activity typically fluctuates in wave-like patterns, and depending on the frequency of these patterns, one distinguishes different brain waves called δ (frequency of 1 to 3 Hz), θ (frequency of 4 to 7 Hz), α (frequency of 8 to 12 Hz), β (frequency of 12 to 28 Hz), and γ (frequency of 28+ Hz) rhythms. Variations in the patterns of these brain waves can indicate the level of consciousness, psychological state, or presence of neurological disorders. Event-related potentials (ERPs) are recorded while the subject is performing a sensory or cognitive task. They reflect the summated activity of network ensembles active during the task and are characterized by a specific pattern called the waveform, which is composed of negative and positive deflections (i.e., waves). For example, a target stimulus detected amidst a series of other nontarget stimuli produces a positive wave around 300 milliseconds after the stimulus. This is known as the P300 or P3 response.
  • Theta oscillations during the processing of monetary loss and gain: a perspective on gender and impulsivity.

    Kamarajan, Chella; Rangaswamy, Madhavi; Chorlian, David B; Manz, Niklas; Tang, Yongqiang; Pandey, Ashwini K; Roopesh, Bangalore N; Stimus, Arthur T; Porjesz, Bernice (2008-06-24)
    Event-related oscillations (EROs) have proved to be very useful in the understanding of a variety of neurocognitive processes including reward/outcome processing. In the present study, theta power (4.0-7.0 Hz) following outcome stimuli in the time window of the N2-P3 complex (200-500 ms) was analyzed in healthy normals (20 males and 20 females) while performing a gambling task that involved monetary loss and gain. The main aim was to analyze outcome processing in terms of event-related theta power in the context of valence, amount, gender, and impulsivity. The S-transform was used for the signal processing of the ERO data in terms of time-frequency-power. Results from filtered waveforms showed a partially consistent phase-alignment of the increased theta activity corresponding to N2 and P3 components following the outcome stimuli. Gain conditions produced more theta power than loss conditions. While there was anterior involvement in both gain and loss, posterior activation was stronger during gain conditions than during loss conditions. Females exhibited posterior maxima during gain conditions while males had an anterior maxima during both loss and gain conditions. The current source density of theta activity in females involved larger areas with a bilateral frontal activity while males predominantly had a frontal midline activity. Theta power was significantly higher in females than males across all conditions. Low theta (4.0-5.5 Hz) predominantly contributed to the posterior activity during gain conditions. High theta (5.5-7.0 Hz) was more associated with impulsivity measures than low theta activity. These findings may offer valuable clues to understand outcome processing, impulsivity, and gender differences.

View more